Связь комбинаторики с различными разделами математики

Итак, семью способами можно раскрасить вершины куба в два цвета так, чтобы вершин каждого цвета было поровну.

Задача 7. Сколькими различными способами можно грани куба раскрасить в четыре цвета так, чтобы все четыре цвета присутствовали в раскраске каждого куба?

Решение. Для решения этой задачи воспользуемся задачей 3. Пусть М – множество всевозможных по-разному раскрашенн

ых кубов одного размера, положение которых в пространстве фиксировано. Тогда по принципу умножения: первую грань можно раскрасить 4 способами, вторую – тремя, третью – двумя, четвёртую – одним способом, пятую – четырьмя, шестую – четырьмя способами. Получим |M| = 4∙3∙2∙1∙4∙4 = 384. Найдём геометрически различные способы раскраски. Для этого используем описанные в задаче 3 разложения в произведение циклов всех перестановок из группы G вращений куба. Так как в раскраске куба должны присутствовать четыре разных цвета, то минимальное количество циклов в перестановке должно быть равно четырём. Поэтому перестановки 1), 3), 4), 6), 7), 9) – 23) в задаче 3 неподвижных точек не имеют. Таким образом, неподвижные точки имеют 3 перестановки типа <1, 1, 2, 2> и 1 перестановку типа <1, 1, 1, 1, 1, 1>. Определим количество неподвижных точек для перестановок каждого типа. Для перестановки типа <1, 1, 1, 1, 1, 1> имеем по принципу умножения Р4 = 4∙3∙2∙1∙4∙4 = 384 неподвижные точки. Для каждой перестановки типа <1, 1, 2, 2> по принципу умножения имеется Р4 = 4∙3∙2∙1 = 24 неподвижные точки. По лемме Бернсайда получаем (1∙384+3∙24) = 19.

Итак, существует 19 различных способов раскраски граней куба в 4 цвета так, чтобы все 4 цвета присутствовали в раскраске каждого куба.

§ 2. «Метод просеивания» [4]

Познакомимся с наиболее общим методом пересчёта, который можно назвать «методом просеивания» или «комбинаторным просеиванием»: с любым свойством P можно связать его расщепление на некотором множестве A, в соответствии с которым A разбивается на две части: подмножество А1, образованное элементами, обладающими свойством Р, и А2, образованное элементами, не обладающими свойством Р, т. е. обладающими свойством . Выбирая свойства подходящим образом, можно последовательным просеиванием пересчитать подмножества с наложенными на них теми или иными ограничениями.

2.1. Формула включения и исключения

Пусть А – конечное множество и . Будем обозначать через дополнение А1 по отношению к А, а через Card A – число элементов в А.

Тогда

.

Если и , то

(1)

.

Покажем, что формула (1) обобщается на случай n подмножеств , i=1, 2, . n:

(2)

Действуем по индукции. Имеем

(3)

Предположим, что (2) выполняется для случая n-1 подмножеств Ai, i=1, 2,…,n-1:

(4)

Рассмотрим следующие подмножества множества An:

Применяя (4) с A=An, имеем

(5)

Подставляя (5) и (4) в (3), получаем (2). Таким образом, с учётом (1) формула (2) доказана по индукции. Эту формулу называют формулой включения и исключения. Часто её представляют в таком виде:

(6)

Формулы (2) и (6) играют основную роль в перечислении подмножеств, обладающих заданными свойствами. Посмотрим на эти формулы с другой точки зрения. Пусть элементы обладают свойством Pi, i=1, 2, …,n. Тогда мы скажем, что подмножество обладает свойством . Таким образом, если элементы А могут обладать n различными свойствами, то число элементов А, обладающих k указанными свойствами и не обладающих n-k остальными, дается формулой (6).

2.2. Общий метод «просеивания» или «пропускания через решето». Решето Сильва – Сильвестра

Формула (6) описывает последовательный процесс пересчёта, называемый решетом Сильва – Сильвестра.

Пример. Рассмотрим множество

и следующие свойства:

четное число,

и А >6, (7)

и 2 < A < 8.

Подсчитаем число элементов А, обладающих свойством . Обозначим подмножества, соответствующие свойствам Р1, Р2, Р3, через А1, А2, А3. Тогда

«Просеиваем» сначала А через Р1: Card A1=6. Затем просеиваем А1 через Р2 и Р3: , . Просеиваем через Р3: Итак,

Формула (6) не позволяет, однако, перечислить элементы искомого множества. Находим его, выписывая последовательно: , , . Разумеется, для множества с небольшим числом элементов проще выписать искомое подмножество, однако это трудно сделать при большой мощности множества.

2.3. Использование общего метода решета в теории чисел

Теорема 1. Пусть А={1, 2, …,n} и а1, а2, …, аr, , i=1, 2, …,r, попарно взаимно просты. Количество целых чисел k таких, что 0 < k ≤ n, ai не делит k, i=1, 2, …,r, равно

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы