Разработка системы управления многосвязных систем автоматического регулирования исполнительного уровня
Рисунок 2.4 – Переходные характеристики относительно пар «вх1-вых2» для дискретной МСАР с различными То
Попытка увеличить шаг дискретизации приводит к увеличению максимального отклонения управляемой величины от установившегося значения и времени установления.
Уменьшим шаг дискретизации. Получим переходные характерис
тики для ![]()
![]()
![]()
![]()
(Рисунок 2.5)
Из графиков видно, что уменьшая шаг дискретизации можно добиться уменьшения максимального отклонения управляемой величины от установившегося значения. Оптимальное значение
так как в этом случае наблюдается минимальное значение hmax(t), в то же время достаточно быстро достигается установившееся значение.
Рисунок 2.5 – Переходные характеристики относительно пар «вх1-вых2» для дискретной МСАР с различными То
Таким образом, при
автономность является менее грубой, при таком значении шага дискретизации свойство автономности можно считать практически выполненным
2.4 Устойчивость цифровой МСАР
Запишем передаточную матрицу приведенной непрерывной части:
,
. (2.1)
Запишем частотную передаточную матрицу ДЗ ПНЧ:
, (2.2)
где
, здесь
частота дискретизации.
Определим значение частоты дискретизации:
Получим передаточную матрицу цифрового корректирующего устройства по методу трапеций подстановкой
:
(2.3)
Частотно-передаточная матрица разомкнутой системы запишется в виде
Определитель матрицы возвратных разностей:
Построим обобщенный годограф Найквиста с помощью MathCAD.
а) б)
Рисунок 2.6 – Обобщенный годограф Найквиста цифровой МСАР
а) общий вид годографа Найквиста
б) построение годографа в области высоких частот;
Разомкнутая система не имеет правых корней характеристического уравнения, поэтому для устойчивости замкнутой МСАР необходимо и достаточно, чтобы обобщенный годограф Найквиста, дополненный на участке разрыва дугой бесконечно большого радиуса, не охватывал точку с координатами (0; j0). Так как обобщенный годограф Найквиста, дополненный на участке разрыва дугой бесконечно большого радиуса, не охватывает точку с координатами (0; j0), то цифровая МСАР при
является устойчивой.
Проверим устойчивость цифровой МСАР с помощью обобщенного критерия Найквиста при увеличенном в три раза расчетном значении
:
Передаточную матрицу приведенной непрерывной части, частотную передаточную матрицу ДЗ ПНЧ, дискретную передаточную матрицу цифрового корректирующего устройства определим по формулам (2.1) – (2.3).
Построим годограф Найквиста с помощью программного пакета MathCAD.
а) б)
Рисунок 2.7 – Обобщенный годограф Найквиста цифровой МСАР
а) общий вид годографа Найквиста
б) построение годографа в области высоких частот;
Разомкнутая система не имеет правых корней характеристического уравнения, поэтому для устойчивости замкнутой МСАР необходимо и достаточно, чтобы обобщенный годограф Найквиста, дополненный на участке разрыва дугой бесконечно большого радиуса, не охватывал точку с координатами (0; j0). Так как обобщенный годограф Найквиста, дополненный на участке разрыва дугой бесконечно большого радиуса, не охватывает точку с координатами (0; j0) (см. рисунок 2.17 б)), то цифровая МСАР при
является устойчивой, но запасы устойчивости системы уменьшаются (обобщенный годограф Найквиста при
пересекает координатные оси плоскости ближе к точке (0; j0), чем при
).
2.5 Реакция цифровой МСАР на гармоническое воздействие
Получим реакцию цифровой МСАР по первому каналу на гармоническое воздействие с частотой w1=9.9 и сравним ее с аналогичной реакцией первого сепаратного канала.
Рисунок – Реакция цифровой МСАР по первому каналу и первого сепаратного канала на гармоническое воздействие с частотой w1=9.9.
Сравним амплитуды колебаний выходного сигнала первого канала цифровой МСАР и первого сепаратного канала:
Таким образом, можно сделать вывод о достаточно высокой точности МСАР, так как реакции цифровой МСАР по первому каналу на гармоническое воздействие практически совпадает с реакцией на аналогичное воздействие первого сепаратного канала, амплитуды колебаний выходных сигналов различаются незначительно.
Библиографический список
1. СТО ЮУрГУ 04–2008 Стандарт организации. Курсовое и дипломное проектирование. Общие требования к содержанию и оформлению / составители: Т.И. Парубочная, Н.В. Сырейщикова, В.И. Гузеев, Л.В. Винокурова. – Челябинск: Изд-во ЮУрГУ, 2008, – 56 с.
2. Автоматизированное проектирование систем автоматического управления /.А. Алексанкин, А.Е. Бржозовский, В.А. Жданов и др.; под ред. В.В. Солодовнива. – М.: Машиностроение, 1990. – 335 с.
3. Автоматизированное управление технологическими процессами: учебное пособие / Н.С. Зотов, О.В. Назаров, Б.В. Петелин, В.Б. Яковлев; под ред. В.Б. Яковлева. – Л.: Изд-во ЛГУ, 1988. – 224 с.
4. Александров, А.Г. Синтез регуляторов многомерных систем/ А.Г. Александров. – М.: Машиностроение, 1986. – 272 с.
5. Баранчук, Е.И. Взаимосвязанные и многоконтурные регулируемые системы Баранчук. – Л.: Энергия, 1968. – 267 с.
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем
