Структурный синтез устройств с мультидифференциальными операционными усилителями

Рис2

Рис. 2. Избирательный усилитель с собственно компенсацией влияния f1 ОУ

Если Rc >> h11OЭ, то

(5)

(6)

и при использовании блокирующего конденсат

ора С (Rи2~=0) точность реализации требуемого К0 определяется в основном идентичностью режимов работы V1 и V2 (стабильностью отношения крутизны S1 и S2). При К0<2Q2–1 это свойство обеспечивается глубокой обратной связью через Rи2 V2.

Рассмотренным примером возможные схемотехнические способы реализации структуры не ограничиваются. Так, при необходимости иметь низкое входное сопротивление (токовое управление) можно в структуре V3 использовать дополнительный эмиттер, тогда:

. (7)

Конечно, таких особенностей практического использования новых структур может быть достаточно много.

Не менее важную проблему, возможно методологического характера, составляют новые задачи синтеза оптимальных или рациональных структур при иных исходных предпосылках, но в рамках существующей парадигмы. Более чем полувековой опыт развития схемотехники показывает, что эволюция технологии компонент очень часто заставляет пересматривать критерии схемотехнического проектирования, поэтому завершать исследования набором рекомендаций просто нецелесообразно. И все же один важный вывод, непосредственно относящийся в проблеме структурного синтеза, схемотехники дают. Практически важные и технологически приемлемые свойства схем обеспечивает обратная связь. Можно достаточно уверенно утверждать, что обратная связь оказалась «верным другом» схемотехники. И чем больше контуров обратной связи, тем больше параметрических «степеней свободы» и выше качественные показатели конечного устройства. Но обратные связи нужно использовать аккуратно, грамотно и целенаправленно, так, чтобы взять из их сочетаний только лучшее и парировать негативные последствия. Действительно, компенсирующие обратные связи как на компонентном, так и на функциональном уровнях часто являются положительными, а точнее – имеют положительное возвратное отношение. И если не рассматривать их в совокупности с другими контурами и не анализировать их предельную глубину, то можно выделить много специфических негативных последствий и в конечном итоге просто не решить вполне конкретную задачу схемотехнического проектирования. Однако, когда решение в рамках процедуры структурного синтеза найдено, легко установить, что глубина таких контуров в целом зависит от конкретного «паразитного» параметра, а негативы «степеней свободы» проявляются далеко за пределами полосы расширенной области частот. Однако в электронике любое новое качество сопровождается определенными потерями. Важно сохранить суммарный позитивный результат. Материал настоящей монографии этот тезис только подтверждает.

Именно этот непротиворечивый вывод и позволяет на сформулированную проблему смотреть с определенным оптимизмом. При возникновении принципиально новых задач необходимо предварительно решать ряд вспомогательных проблем. Во-первых, путем сопоставительного анализа элементного и компонентного базиса выделить те схемотехнические и топологические конфигурации, которые можно рассматривать в качестве базисных структур. Именно эти структуры составят фундамент будущей схемотехники. Детальное изучение таких структур позволит также выделить те побочные «негативные» факторы технологических процессов и физических принципов преобразования сигнала, которые являются доминирующими и влияние которых на качественные показатели изделий необходимо впоследствии минимизировать. При кажущейся простоте эта задача характерна рядом «подводных камней»: сложность моделей компонент, их идентификация, проблемы адекватности физических моделей и т.п. Однако современные схемотехнические САПР и средства моделирования, самостоятельность их развития позволяют достаточно эффективно осуществить ранжирование базисных структур по практическим приоритетам и показателям качества. Законы физики подсказывают, что таких структур не может быть много. Если такая задача решена, то дальнейшие исследования можно значительно формализовать.

Во-вторых, из приоритетных базисных структур необходимо получить обобщение структуры электронных схем, которые образуют полный сигнальный граф. При этом дополнительная (коммутирующая) часть обобщенной структуры может состоять из пассивных компонентов, осуществляющих суммирование сигналов – напряжений или токов на входах базисных структур. Такие обобщенные структуры должны обладать свойством полноты. Именно это свойство гарантирует, что любые частные решения задачи могут быть получены из обобщенной структуры методом усечения – устранение тех связей, которые не приводят к решению поставленной задачи. Конкретизация процедуры усечения и составляет существо задачи структурного синтеза.

В-третьих, из целей проекта необходимо сформировать меру различия схем – свертку критериев качества. Несмотря на то что этот этап является подготовительным, он требует детального анализа задачи синтеза. Неверно сформулированный критерий, противоречивый, без необходимых параметрических ограничений, свойств реализуемости и т.п. не позволяет достичь цели проекта. В этом отношении важное значение приобретает изучение (детальный анализ) обобщенных структур и выявление их фундаментальных свойств, связанных с сущностью базовой задачи. Здесь уместно напомнить, что, как было показано в монографии, чувствительность реализуемой передаточной функции Ф(р) и ее приращение, вызванное конечностью усиления сигнала базисной структуры Kt(p), всегда устанавливают связь некоторого набора локальных передаточных функций Hi(p), Ft (p), Fu(p):

(8)

. (9)

Изучение степени влияния этого набора на базовые критерии проекта позволят не только уменьшить их число и снять основные противоречия, но и при необходимости обосновать целесообразность пересмотра базисных структур, придав им предварительно некоторые свойства, отображаемые в функциях Кi(р). Важным аргументом в реализации такого подхода является возможность более строгой формализации процедуры усечения. В некоторых случаях, как это было показано в монографии, общая задача значительно упрощается и сводится к модернизации эвристических схем путем добавления (расширения) новых функциональных связей, которые придают схеме необходимые свойства. Важно отметить, что такие достаточно общие выводы обогащают общую теорию электронных схем в ее поступательном развитии.

Библиографический список

1. Айзерман, М.А. О некоторых структурных условиях устойчивости систем автоматического регулирования [Текст] / М.А. Айзерман // Автоматика и телемеханика. – 2008. – Т. 9, № 2.

2. Айзинов, М.М. Избранные вопросы теории сигналов и теории цепей [Текст] / М.М. Айзинов. – М. : Связь, 2011. – 348 с.

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы