Геометрические построения на плоскости

1)

2) l, l – серединный перпендикуляр отрезка BD;

3) C, C = [AD) ∩ l.

Треугольник АВС – искомый.

Доказательство. Действительно, ∆АВС удовлетворяет всем условиям задачи, т.к. по построению

АВ = а, АС – ВС = АD = d, BAD = α.

Исследование. Проверил каждый шаг построения на осуществимость и ед

инственность. Первый шаг возможен и единственен тогда и только тогда, когда 0<α<π. Второй шаг возможен и единственен всегда. Третий шаг возможен и единственен тогда и только тогда, когда α< а cos α. Действительно, если d < a cos α, то прямая l пересекает луч AD. Если же d = a cos α , то l и AD, поэтому треугольника, удовлетворяющего условию задачи, не существует. В том случае, когда d < a cos α, прямая l пересекает луч DА. В этом случае также задача не имеет решения.

Но вернемся к анализу. У нас задача решена, предполагая, что α лежит против меньшей из двух боковых сторон. Если α лежит против большей стороны, то предыдущий метод построения не проходит. Как быть? По теории мы должны и для этого случая дать решение. Нетрудно убедиться, что ΔABF определен (a,d и угол π - α). Построение, доказательство и исследование провoдятcя так же, как и выше.

Необходимо еще выяснить: вcе ли решения найдены. Да, все, так как если бы каким-то способом построить треугольник по a, d и α то этот треугольник был бы равен одному из указанных треугольников (это легко доказать через ).

Методы решения задач на построение

Основными являются три: метод геометрических мест (ГМТ), метод геометрических преобразований, алгебраический метод.

Метод геометрических мест (пересечения фигур).

Сущность метода: решение задачи сводит к построению некоторой точки (основного элемента построения), подчиненной двум условиям. Отбрасывают одно из этих условий и строят ГМТ Ф1 , удовлетворяющих первому условию, потом Ф2 - ГМТ, удовлетворяющих второму условию. По соответствующей аксиоме конструктивной геометрии можем сказать Ф1∩Ф2 = Ø или нет и если ≠ Ø, то считать построенным пересечение Ф1 ∩ Ф2. Точки Ф1 ∩ Ф2 и только они удовлетворяют обоим условиям одновременно. Точки пересечения и только они дают решение задачи.

Заметим, что успех от применения этого метода полностью зависит от знания конкретных ГМТ. Наиболее часто применяются следующие геометрические места:

ГМТ 1. Множество точек плоскости, каждая из которых равноудалена от двух данных точек А и В, есть серединный перпендикуляр отрезка АВ.

ГMT 2. Множество точек, находящихся на данном расстоянии от данной прямой, есть две прямые, параллельные данной и отстоящие от нее на данном расстоянии.

ГМТ 3. Множество точек, каждая из которых равноудалена от двух данных параллельных прямых, есть прямая, являющаяся их осью симметрии.

ГМТ 4. Множество точек, каждая из которых равноудалена от двух пересекающихся прямых, есть две взаимно перпендикулярные прямые, содержащие биссектрисы углов, образованных данными прямыми,

ГМТ 5. Множества точек плоскости, из которых отрезок АВ виден под прямым углом, есть окружность (без точек А и В ), построенная на отрезке АВ как на диаметре.

ГМТ 6. Множество точек плоскости, из которых отрезок АВ виден под углом α, где α ≠ 90º, α ≠ 180º , есть две дуги с общими концами А и В (без точек А и В), симметричные относительно прямой АВ.

ГМТ 7. Множество точек плоскости, из которых данная окружность видна под углом α, где α ≠ π, есть окружность,- концентрическая с данной, радиус которой больше радиуса данной окружности.

ГМТ 8. Множество точек, делящих всевозможные хорда окружности (O, ОА), проведенные через точку А окружности, в одном и том же отношении λ, где λ > 0, есть окружность (без точки А) с центром на прямой ОА, проходящая через точку А. Если λ = 1, то эта окружность построена на отрезке ОА как на диаметре.

ГМТ 9. Множество точек плоскости, для каждой из которых разность квадратов расстояний от двух данных точек А и В постоянна, есть прямая, перпендикулярная прямой АB.

ГМТ 10. Множество точек плоскости, для каждой из которых сумма квадратов расстояний до двух данных точек А и В равна а2, есть окружность с центром в середине отрезка АВ, если 2а2>AB2; середина отрезка AB, если 2a2 = AB2; и пустое множество, если 2a2<AB2.

ГМТ 11. Множество точек плоскости, для каждой из которых отношение расстояний до двух данных точек А и В постоянно и отлично от единицы, есть окружность с центром на прямой АВ (окружность Аполлония).

Для иллюстрации метода ГМТ решим следующую задачу.

Задача. Построить треугольник, если известны: длина основания а, угол при вершине α и отношение боковых сторон λ, λ ≠ 1.

Решим методом ГМТ.

Анализ. Две вершины А и В искомого треугольника легко построить. Задача сводится к построению точки С. Точка С должна удовлетворять следующим двум условиям: 1) точка С принадлежит сегменту, вмещающему данный угол α; 2) точка С принадлежит окружности Аполлония.

ς α

Построение. Строим последовательно: а) отрезок АВ, АВ = 0; б) сегмент А ς В, вмещающий данный угол α; в) окружность Аполлония на отрезке АВ; г) точку С , принадлежащую пересечению сегмента А ς В и окружности Аполлония.

Треугольник АВС - искомый.

Доказательство и исследование предлагаем читателям провести самостоятельно.

Метод геометрических преобразований

Сущность метода: при решении задачи, и прежде всего на первом этапе – анализе, наряду с данными и искомыми фигурами рассматривают другие фигуры, полученные из данных или искомых фигур (или их частей) с помощью некоторого геометрического преобразования (ГП). В зависимости от того, какое (ГП) выбрано, говорят о той или иной разновидности метода ГП (метод параллельного переноса, гомотетии, инверсии и т.д.). Рассмотрим примеры.

1. Параллельный перенос (ПП).

Сущность: наряду с данными и искомыми фигурами рассматривают другие фигуры, полученные из указанных фигур (или частей) с помощью ПП.

Задача. Достроить трапецию так, чтобы ее основания и диагонали были соответственно равны четырем данным отрезкам.

Анализ. Пусть ABCD - искомая трапеция. Сделаем параллельный перенос плоcкости, определяемый вектором ВС: ВС : BD → CF.

Треугольник ACF определен по трем сторонам: AF = a + b, AC = d1, CF = d2.

План решения ясен. Предлагаем читателям завершить решение этой задача.

2. Осевая симметрия.

Задача. Даны прямая l и две точки А и В, принадлежащие одной плоскости, определяемой прямой l. Найти такую точку Хl, чтобы сумма АХ + ХВ была минимальной.

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы