Применение производной при нахождении предела

f¢ (x) ==0,f¢¢ (x) ==0,f¢¢¢ (x) ==0,f (4) (x) ==0,f (5) (x) =r=0 width=121 height=27 src="images/referats/7483/image047.png">=0,f (6) (x) ==0,f (7) (x) ==6¹0.

Таким образом, порядок этой бесконечно малой равен 7 и f (x) ~x7, x®0.

3.4 Раскрытие неопределенностей вида 0¥, 1¥, 00,¥0,¥ - ¥

Неопределенности вида 0¥ сводятся к уже рассмотренным.

Примеры.

1)

2)

3)

4) ¥ - ¥

Можно, например, так

5) Неопределенности вида 1¥,00,¥0 сводятся к уже рассмотренным логарифмированием

y=uv=ev ln u

Пример 1.

.

Вычисление.

.

Этот предел рассматриваем, как

,

где

, а .

Из теоремы о существовании предела суперпозиции двух функций следует, что . Далее

,

заменяя знаменатель на эквивалентную бесконечно малую получим

=.

Таким образом,

.

Пример 2.

.

Представим функцию в следующем виде.

и вычислим предел

Пример 3. Вычислить предел:

Пример

4.

Пример 5.

При х®¥

при exвозрастает быстрее любой степенной функции хк, k>0

ln (x) возрастает медленнее любой степенной функции хк

4. Формула тейлора. вычисление пределов с помощью формулы тейлора

4.1 Многочлен Тейлора. Формула Тейлора с остаточным членом Rn.

Пусть f (n-1) - раз дифференцируема в окрестности U= (x0-a,x0+a) точки x0 и существует f (n) (x0). Многочленом Тейлора в точке x0 называется многочлен вида

.

Свойства многочлена Тейлора

(1)

Из (1) следует

=(2)

Из (1) следует

Pn (x0) =f (x0), (3)

В частности,

, k=0,1,…,n.

Обозначим Rn (x) =f (x) - Pn (x), тогда

(4)

(4) - формула Тейлора функции f в окрестности точки x0 с остаточным членом Rn. Основная задача будет состоять в представлении остатка в удобной для оценок формах.

4.2 Остаток в форме Пеано

Теорема 1. Если функция f (x) (n-1) - раз дифференцируема в окрестности U= (x0-a,x0+a) точки x0 и существует f (n) (x0), то имеет место равенство

.

Другими словами

(5)

Доказательство. Для краткости будем обозначать R (x) =Rn (x)

(10)

(11)

(1m)

(1n-1)

f (n-1) (x) дифференцируема в точке x0, поэтому

Откуда

По правилу Лопиталя

Теорема 2. (Единственность представления функции по формуле Тейлора) Если f имеет n-ю производную в точке x0 и

,

то

Лемма. Если

, (2)

то bk=0, k=0,1,…,n

Доказательство. в (2) перейдем к пределу при x® x0, получим

b0 = 0,,

делим полученное выражение на (x-x0) и переходим к пределу при x® x0 и т.д.

Доказательство теоремы.

откуда и следует утверждение.

4.3 Другие формы остатка в формуле Тейлора

Пусть функция f (x) (n+1) -раз дифференцируема в окрестности Ua (x0) = (x0-a,x0+a) и y (x) дифференцируема в , y¢¹0 в , y (x) непрерывна в .

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы