Решение уравнений, неравенств, систем с параметром
Ответ:
.
III. Найти все значения параметра а, при каждом из которых система уравнений
имеет решения.
Решение.
Из первого уравнения системы получим
при
Следовательно, это уравнение задаёт семейство “полупарабол” - правые ветви параболы
“скользят” вершинами по оси абсцисс.
Выделим в левой части второго уравнения полные квадраты и разложим её на множители
Множеством точек плоскости
, удовлетворяющих второму уравнению, являются две прямые
и
Выясним, при каких значениях параметра а кривая из семейства “полупарабол” имеет хотя бы одну общую точку с одной из полученных прямых.
Если вершины полупарабол находятся правее точки А, но левее точки В (точка В соответствует вершине той “полупараболы”, которая касается
прямой
), то рассматриваемые графики не имеют общих точек. Если вершина “полупараболы” совпадает с точкой А, то
.
Случай касания “полупараболы” с прямой
определим из условия существования единственного решения системы
В этом случае уравнение
имеет один корень, откуда находим :
Следовательно, исходная система не имеет решений при
, а при
или
имеет хотя бы одно решение.
Ответ: а Î (-¥;-3] È(
;+¥).
IV. Решить уравнение
Решение.
Использовав равенство
, заданное уравнение перепишем в виде
Это уравнение равносильно системе
Уравнение
перепишем в виде
. (*)
Последнее уравнение проще всего решить, используя геометрические соображения. Построим графики функций
и
Из графика следует, что при
графики не пересекаются и, следовательно, уравнение не имеет решений.
Если
, то при
графики функций совпадают и, следовательно, все значения
являются решениями уравнения (*).
При
графики пересекаются в одной точке, абсцисса которой
. Таким образом, при
уравнение (*) имеет единственное решение -
.
Исследуем теперь, при каких значениях а найденные решения уравнения (*) будут удовлетворять условиям
Пусть
, тогда
. Система примет вид
Её решением будет промежуток хÎ (1;5). Учитывая, что
, можно заключить, что при
исходному уравнению удовлетворяют все значения х из промежутка [3; 5).
Рассмотрим случай, когда
. Система неравенств примет вид
Решив эту систему, найдем аÎ (-1;7). Но
, поэтому при аÎ (3;7) исходное уравнение имеет единственное решение
.
Ответ:
если аÎ (-¥;3), то решений нет;
если а=3, то хÎ [3;5);
если aÎ (3;7), то
;
если aÎ [7;+¥), то решений нет.
V. Решить уравнение
, где а - параметр. (5)
Решение.
1. При любом а :
2. Если
, то
;
если
, то
.
3. Строим график функции
, выделяем ту его часть , которая соответствует
. Затем отметим ту часть графика функции
, которая соответствует
.
4. По графику определяем, при каких значениях а уравнение (5) имеет решение и при каких – не имеет решения.
Ответ:
если
, то 
если
, то
;
если
, то решений нет;
если
, то
,
.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах
