Элементарное изложение отдельных фрагментов теории подгрупповых функторов

Откуда получаем . Из и следует равенство .

Лемма доказана.

Пример 10. Пусть width=19 height=17 src="images/referats/7441/image058.png">- некоторый класс конечных групп и - формация. Пусть для любой группы

Покажем, что - подгрупповой - функтор.

Действительно, пусть и . Тогда , и поэтому, согласно лемме 3.1, мы имеем

Следовательно, . Аналогично, если , то . Следовательно, - подгрупповой -функтор. Для обозначения такого функтора мы применяем запись .

Пример 11. Для каждой группы через обозначим совокупность всех абнормальных максимальных подгрупп из . Понятно, что - подгрупповой функтор. Для обозначения такого функтора мы будем применять запись .

4. Решетки подгрупповых функторов

Аспект применения подгупповых функторов состоит в сопоставлении группе некоторой решетки подгупповых функторов свойства которой тесно связаны со свойствами самой группы. Это позволяет использовать строение группы в зависимости от условий налогаемых на соответствующую решетку подгупповых функторов.

Следует отметить также, что используя понятие подгуппового функтора можно строить новые типы решеток, что указывает на полезность этого понятия и для теории решеток.

Пусть - некоторый класс групп. Будем говорить, что - ограниченный класс, если найдется такое кардинальное число , что для всех имеет место . Везде в дальнейшем мы предполагаем, что - некоторый ограниченный класс групп.

Обозначим через, множество всех подгрупповых -функторов, а через - множество всех замкнутых подгрупповых -функторов. На множестве введем частичный порядок , полагая, что имеет место тогда и только тогда, когда для любой группы справедливо .

Для произвольной совокупности подгрупповых -функторов определим их пересечение для любой группы . Понятно, что - нижняя грань для в . Мы видим, что - полная решетка с нулем и единицей . Понятно, что функтор , где для всех , является верхней гранью для в .

Заметим, что если - произвольный набор замкнутых подгрупповых -функторов, то, очевидно, - замкнутый подгрупповой -функтор. А поскольку замкнутым является и функтор , мы видим, что также является полной решеткой.

Оказывается, что свойства таких решеток тесно связаны со свойствами групп, входящих в . Отметим, например, что если содержится в классе конечных групп, то решетка является цепью тогда и только тогда, когда для некоторого простого числа класс состоит из элементарно-абелевых -групп. С другой стороны, решетка является цепью тогда и только тогда, когда все группы из являются -группами. Покажем, что в общем случае не является подрешеткой в . Для этого достаточно установить, что если - класс всех конечных групп и ,, где и - различные простые числа, то функтор не является замкнутым. Пусть , где - группа порядка , a - группа порядка . Понятно, что и . Таким образом, если бы функтор был бы замкнутым, то мы бы имели Но, как нетрудно заметить, во множество входят лишь такие подгруппы из для которых имеет место одно из двух: или . Это означает, что . Следовательно, функтор не является замкнутым.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы