Неразрешимость логики первого порядка
а это предложение является описанием времени s + 1.
Если имеется стрелка типа (в), то одна из формул множества Д есть
"x "y "t ((t Qi x'  t Aj x') → (t' Qk x
t Aj x') → (t' Qk x  (t A0 y → t' A0 y)
(t A0 y → t' A0 y) … 
 (t An y → t' An y)))
(t An y → t' An y))) 
Тогда существует такой символ aq, что из последней формулы, объединенной с (5), (6), (8), следует
0(s+1)Qi0(p-1)  0(s+1)
0(s+1) 
  …
…  0(s+1)Aj 0(p-1)
0(s+1)Aj 0(p-1)  …
…  0(s+1)
0(s+1) 
  "y
"y 
((y 
 y
y  0(p-1)
0(p-1)  …
…  y
y ) → 0(s+1)A0 y)
) → 0(s+1)A0 y) 
а это предложение является описанием времени s + 1.
Во всех трех случаях множество Д имеет следствием некоторое описание времени s + 1, и тем самым неразрешимость логики первого порядка доказана.
Доказательство неразрешимости логики первого порядка методом Геделя
Для доказательства неразрешимости логики первого порядка достаточно продемонстрировать, как по данной машине Т с входным значением n (то есть когда машина находится на самой левой единице в сплошной последовательности из n единиц при пустых символах в остальных клетках ленты) построить такие предложение I и конечное множество предложений Г, что машина Т при входном значении  останавливается тогда и только тогда, когда Г ├ I.
останавливается тогда и только тогда, когда Г ├ I. 
Не существует эффективной процедуры, позволяющей решать, останавливается ли произвольная машина Тьюринга Т при произвольном входном значении n и по данной машине Тьюринга Т можно построить примитивно рекурсивную функцию g, обладающую следующим свойством: какое бы n мы не взяли, g (n, t) = 0 в точности тогда, когда t – номер шага, более позднего, чем тот, на котором машина T останавливается, если ее запустить при входном значении n. (по определению функции g, если шаг t не таков, то g (x, t) = <a, b, c> =  для некоторых a, b, c и потому g (x, t) > 0. Если же t – такой шаг, то g (x, t) = 0.
для некоторых a, b, c и потому g (x, t) > 0. Если же t – такой шаг, то g (x, t) = 0. 
Таким образом, если дана машина Т, то можно эффективно построить некоторую конечную последовательность q0, q1, …, qr примитивно рекурсивных функций, удовлетворяющую двум условиям: 1) каждая функция gi либо является базисной функцией, либо получается из некоторых предыдущих функций с помощью композиции или примитивной рекурсии и 2) для всякого n машина T, запущенная на входном значении n, в конце концов останавливается тогда и только тогда, когда gr(n, t) = 0 для некоторого t.
Построим теперь по данной T последовательность примитивно рекурсивных функций, удовлетворяющую условиям 1) и 2). Каждой функции gi поставим в соответствие свой функциональный символ gi с тем же числом аргументов, что и gi. Пусть g0 = '. Используя эти символы, выпишем для каждого gi одну или две очевидные формулы, определяющие функцию gi Например,
если gi = z, то "x gi(x) = 0
если gi = s, то "x gi(x) = x'
если gi =  , то "x1 … "xm … "xn gi(x1, …, xm, …, xn) = xm
, то "x1 … "xm … "xn gi(x1, …, xm, …, xn) = xm 
Если gi получается из предшествующих ей функций gj и gk c помощью примитивной рекурсии, то "x gi(x, 0) =gj(x) и "x "y gi(x, y') =gk(x, y, gi(x, y))
Если же gi получается из предшествующих ей функций gо и  путем композиции, то "x gi(x) =gj
путем композиции, то "x gi(x) =gj (для краткости заменили здесь x1, x2, …, xn на x, a "x1, "x2, …, "xn на "x)
 (для краткости заменили здесь x1, x2, …, xn на x, a "x1, "x2, …, "xn на "x) 
Запишем также формулы "x x ' ≠ 0 и "x "y (x ' = y ' → x = y). Обозначим теперь через Г множество всех этих формул, а через I – формулу  .
. 
Утверждение. Машина T при входном значении  останавливается тогда и только тогда, когда Г ├ I.
останавливается тогда и только тогда, когда Г ├ I. 
«Тогда». Пусть Г ├ I. Обозначим через  модель, областью которой служит множество натуральных чисел и которая интерпретирует символ 0 как 0, а функциональные символы gi – как
модель, областью которой служит множество натуральных чисел и которая интерпретирует символ 0 как 0, а функциональные символы gi – как  . Все предложения из Г истинны в
. Все предложения из Г истинны в  . Поскольку Г ├ I, предложение I истинно также. Следовательно, для некоторого
. Поскольку Г ├ I, предложение I истинно также. Следовательно, для некоторого  справедливо
справедливо  . Согласно 2), T останавливается на
. Согласно 2), T останавливается на  .
. 
«Только тогда». Предположим, что Т останавливается при входном значении  . Для доказательства соотношения Г ├ I предположим, что
. Для доказательства соотношения Г ├ I предположим, что  – произвольная модель, в которой все предложения из Г истинны, и покажем, что из этого предположения следует истинность
– произвольная модель, в которой все предложения из Г истинны, и покажем, что из этого предположения следует истинность  в
в  . Пусть теперь
. Пусть теперь  – интерпретация символа 0 в модели
– интерпретация символа 0 в модели  , a
, a  – при всяком
– при всяком  – интерпретация в
– интерпретация в  символа gi. Пусть, далее,
символа gi. Пусть, далее,  (так что
(так что  – интерпретация в
– интерпретация в  символа
символа  ), и пусть
), и пусть  . Так как формулы
. Так как формулы  и
и  истинны в
истинны в  , функция
, функция  , для которой
, для которой  и
и  , является изоморфизмом множества {0, 1, 2,…} натуральных чисел на множество N. Таким образом, можно считать, что N и является в действительности множеством натуральных чисел,
, является изоморфизмом множества {0, 1, 2,…} натуральных чисел на множество N. Таким образом, можно считать, что N и является в действительности множеством натуральных чисел,  , ограничение функции
, ограничение функции  на множество N есть
на множество N есть  , а потому всякий нумерал е обозначает число
, а потому всякий нумерал е обозначает число  в
в  .
. 
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах

 Скачать реферат
 Скачать реферат