Экономико–математические методы в управлении

Вторая симплексная таблица:

Базис

Сб

А0

y1

70

y2

40

y3

50

y4

0

y5

0

y6

0

y4

0

23/8

0

43/8

23/8

1

0

-7/8

y5

0

13/8

0

1/8

13/8

0

1

-5/8

y1

70

7/8

1

3/8

7/8

0

0

1/8

   

245/4

0

-55/4

45/4

0

0

35/4

Третья симплексная таблица:

Базис

Сб

А0

y1

70

y2

40

y3

50

y4

0

y5

0

y6

0

Y2

40

23/43

0

1

23/43

8/43

0

-7/43

y5

0

67/43

0

0

67/43

-1/43

1

-26/43

y1

70

29/43

1

0

29/43

-3/43

0

8/43

   

2950/43

0

0

800/43

110/43

0

280/43

В последней таблице в строке Δ нет отрицательных элементов. В соответствии с критерием оптимальности точка максимума Smax = 2950/43 достигнута при значениях: y1 = 29/43; y2 = 23/43; y3 = 0.

По теореме двойственности: Fmin = Smax = 2950/43.

На основании правила соответствия между переменными, оптимальное решение прямой задачи:

y4 x1 = 110/43 y5 x2 = 0 y6 x3 = 280/43

Ответ: В смесь минимальной стоимости 2950/43 целесообразно включить 110/43 единиц продукта C1, 280/43 единиц продукта C3, а продукт C2 не включать.

Задание 2.2.

Найти графоаналитическим методом оптимальное решение задачи нелинейного программирования.

maxZ = 3.6x1 – 0.2x12 + 0.8x2 – 0.2x22

2x1 + x2 ≥ 10

x12 -10x1 + x2 ≤ 75

x2 ≥ 0

В данной задаче имеется нелинейная целевая функция с нелинейной системой ограничений. Графическая схема позволит определить положение точки оптимума.

Сначала необходимо преобразовать формулу целевой функции так, чтобы получить её графическое отображение. Воспользуемся методом выделения полного квадрата двучлена относительно x1 и x2, разделив левую и правую части формулы на -0.2:

-5Z = x12 -18x1 + x22 – 4x2

Добавим к левой и правой частям уравнения числа, необходимые для выделения полных квадратов двучлена в правой части выражения:

92 и 22 в сумме составляют 85:

85 – 5Z = (x1 – 9)2 + (x2 – 2)2

В результате получилась формула, позволяющая графически изобразить целевую функцию в виде линии уровня на плоскости X1OX2. Данные линии уровня представляют собой окружности с общим центром в точке O (9;2). Данная точка является точкой абсолютного экстремума целевой функции.

Для определения характера экстремума нужно провести анализ целевой функции на выпуклость/вогнутость. Для этого необходимо определить вторые частные производные и составить из них матрицу:

Z”x1x1 Z”x1x2 = -0.4 0

Z”x2x1 Z”x2x2 0 -0.4

Определим знаки главных миноров данной матрицы.

Главный минор первого порядка -0.4 < 0.

Главный минор второго порядка 0.16 > 0.

Т.к. знаки миноров чередуются, функция Z - строго вогнута. Экстремум вогнутых функций – max, следовательно в точке О у целевой функции находится абсолютный максимум.

Для построения области допустимых значений преобразуем второе неравенство системы ограничений:

x12 – 10x1 + x2 ≤ 75

x12 – 10x1 + 25 + x2 ≤ 100

(x1 – 5)2 + x2 ≤ 100

(x1 – 5)2 ≤ 100 – x2

Уравнение (x1 – 5)2 = 100 – x2 выразим через переменные x1* и x2*:

x1* = x1 – 5

x2* = 100 – x2

Уравнение примет вид: x1*2 = x2*.

В системе координат X1*O*X2* данное уравнение является каноническим уравнением параболы.

На рисунке область допустимых значений – ограниченная часть плоскости ABCD. Из полученного графика видно, что точка абсолютного максимума Z лежит внутри ОДР. Следовательно, целевая функция принимает максимальное значение в этой точке:

max Z = Z(O) = Z(9;2) = 17

Задание 3.1

После нескольких лет эксплуатации оборудование может оказаться в одном из трех состояний:

1) требуется профилактический ремонт;

Страница:  1  2  3  4 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы