Исследование электровакуумного триода в рамках виртуального эксперимента

При ua = 0 и иg > 0 между сеткой и анодом возникает скопление электронов и второй потенциальный барьер II (первый барьер I у катода). Почти все электроны, проскочившие сетку, возвращаются на нее, так как не могут преодолеть второй потенциальный барьер. Поэтому при ua = 0 ток сетки имеет наибольшее значение. Лишь сравнительно небольшое число электронов преодолевает второй потенциальный барьер

и попадает на анод, создавая начальный анодный ток.

Если теперь на анод подано положительное напряжение, то второй потенциальный барьер понижается, больше электронов его преодолевает и анодный ток возрастает. Скопление электронов в области второго потенциального барьера вместе с анодом образует систему, подобную диоду. Поле анода действует на это скопление электронов без ослабления, и уже при небольших положительных анодных напряжениях ток анода резко возрастает, а ток сетки резко падает, поскольку все меньше электронов возвращается на сетку. Происходит резкое перераспределение катодного тока между сеткой и анодом, что характерно для режима возврата.

При некотором положительном анодном напряжении второй потенциальный барьер настолько понижается, что уже ни один электрон не возвращается на сетку. Наступает режим перехвата. Дальнейшее увеличение анодного напряжения вызывает рост анодного тока за счет того, что поле анода понижает потенциальный барьер у катода, а также за счет токораспределения. Но теперь анодный ток растет медленнее, так как действие поля анода на потенциальный барьер у катода ослаблено сеткой. Сеточный ток снижается так же незначительно, так число электронов, летящих с катода прямо на проводники сетки, мало зависит от анодного напряжения

В различных лампах в зависимости от конструкции электродов переходу между режимами возврата и перехвата могут соответствовать различные соотношения

Явление токораспределения характеризуют коэффициентом распределения

,

Который не может быть больше единицы и показывает, какую долю катодного тока составляет анодный ток.

Коэффициент токораспределения зависит от отношения ua/ug и конструкции сетки. Например, чем гуще сетка, тем меньше kт, так как более густая сетка перехватывает больше электронов. Характер зависимости kт от ua/ug дан на рис. Если ua = 0, то ua/ug = 0 и kт имеет наименьшее значение, близкое к нулю, так как существует лишь небольшой анодный ток за счет начальной скорости электронов. При увеличении ua/ug сначала kT резко возрастает, что соответствует режиму возврата (область I), а при переходе в режим перехвата (область II) растет медленно, приближаясь к единице.

Характеристики

Характеристики триода при работе его на постоянном токе и без нагрузки называются статическими (обычно говорят просто «характеристики»). Теоретические характеристики могут быть построены на основании закона трех вторых, но не являются точными. Действительные характеристики снимаются экспериментально. Они более точны, так как учитывают островковый эффект, неодинаковость температуры в разных точках катода, неэквипотенциальность поверхности катода прямого накала, эффект Шотки, дополнительный подогрев катода анодным током, начальную скорость электронов, контактную разность потенциалов, термо-ЭДС, возникающую при нагреве контакта различных металлов, и другие явления. Закон степени трех вторых все эти явления не учитывает.

Характеристики в справочниках являются средними, полученными на основе нескольких характеристик, снятых для различных экземпляров ламп данного типа. Поэтому пользование такими характеристиками дает погрешности.

Анодный ток зависит от напряжений сетки и анода:

То же относится к сеточному и катодному токам:

Зависимость между тремя величинами изображается в пространственной системе координат, что практически неудобно. Поэтому одно из напряжений считают постоянным и рассматривают зависимость тока только от одного напряжения.

Широко применяются характеристики, показывающие зависимость тока от сеточного напряжения при постоянном анодном напряжении:

Наиболее важны две первые зависимости. Характеристики, выражающие зависимость ia = F(ug), называются анодно-сеточными. Они аналогичны характеристикам управления транзистора. А характеристики, соответствующие зависимости ig = F1(ug), принято называть сеточными. У транзистора подобные характеристики называются входными. Каждому значению анодного напряжения соответствует определенная характеристика. Следовательно, для каждого тока имеется семейство характеристик. Значения анодного напряжения для них берутся через определенные промежутки.

Второй вид характеристик показывает зависимость токов от анодного напряжения при постоянном сеточном напряжении:

Здесь наиболее важны анодные характеристики, подобные выходным характеристикам транзистора и выражающие зависимость и сеточно-анодные характеристики, дающие зависимость

В справочниках, как правило, приводятся только семейства характеристик для анодного и сеточного токов. Простым сложением их ординат можно построить характеристики для катодного тока.

Для практических расчетов анодного тока достаточно иметь семейство либо анодно-сеточных, либо анодных характеристик. Анодно-сеточные характеристики нагляднее показывают управляющее действие сетки, и их иногда называют управляющими. Зато с анодными характеристиками расчеты проще и точнее.

D:\Documents and Settings\Fiziki\Local Settings\Temporary Internet Files\Content.Word\160620091006.jpg
На рис, а изображены характеристики для токов анода, сетей и катода в зависимости от напряжения сетки при постоянном анодном напряжении,

соответствующие явно выраженному режиму насыщения лампы (например, лампы с вольфрамовым катодом). При иg < 0 характеристики для анодного и катодного тока совпадают. Вследствие влияния островкового эффекта и других факторов начальная точка характеристики (А) обычно соответствует напряжению запирания несколько более низкому, нежели вычисленное по формуле

Если уменьшать по абсолютному значению отрицательное напряжение сетки, то лампа отпирается, потенциальный барьер у катода понижается и анодный ток возрастает. Число электронов, преодолевающих барьер, растет по нелинейному закону, и поэтому характеристика имеет нижний нелинейный участок АБ, который постепенно переходит в средний, приблизительно линейный участок БВ. При положительных сеточных напряжениях характеристика для катодного тока расположена выше характеристики для анодного тока вследствие появления сеточного тока. Характеристика для сеточного тока идет из начала координат подобно характеристике диода.

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы