Черные дыры

5) Кроме этого С.Хоукинг открыл возможность очень медленного самопроизвольного квантового "испарения" черных дыр. В 1974 он доказал, что черные дыры (не только вращающиеся, но любые) могут испускать вещество и излучение, однако заметно это будет лишь в том случае, если масса самой дыры относительно невелика. Мощное гравитационное поле вблизи черной дыры должно рождать пары частица-ант

ичастица. Одна из частиц каждой пары поглощается дырой, а вторая испускается наружу. Например, черная дыра с массой 1012 кг должна вести себя как тело с температурой 1011 К, излучающее очень жесткие гамма-кванты и частицы. Идея об "испарении" черных дыр полностью противоречит классическому представлению о них как о телах, не способных излучать.

4. Поиски черных дыр

Расчеты в рамках ОТО указывают лишь на возможность существования черных дыр, но отнюдь не доказывают их наличия в реальном мире, открытие черной дыры стало бы важным шагом в развитии физики. Поиск изолированных черных дыр в космосе невероятно труден: требуется заметить маленький темный объект на фоне космической черноты. Но есть надежда обнаружить черную дыру по ее взаимодействию с окружающими астрономическими телами, по ее характерному влиянию на них.

Учитывая важнейшие свойства черных дыр (массивность, компактность и невидимость) астрономы постепенно выработали стратегию их поиска. Проще всего обнаружить черную дыру по ее гравитационному взаимодействию с окружающим веществом, например, с близкими звездами. Попытки обнаружить невидимые массивные спутники в двойных звездах не увенчались успехом. Но после запуска на орбиту рентгеновских телескопов выяснилось, что черные дыры активно проявляют себя в тесных двойных системах, где они отбирают вещество у соседней звезды и поглощают его, нагревая при этом до температуры в миллионы градусов и делая его на короткое время источником рентгеновского излучения.

Поскольку в двойной системе черная дыра в паре с нормальной звездой обращается вокруг общего центра массы, используя эффект Доплера, удается измерить скорость звезды и определить массу ее невидимого компаньона. Астрономы выявили уже несколько десятков двойных систем, где масса невидимого компаньона превосходит 3 массы Солнца и заметны характерные проявления активности вещества, движущегося вокруг компактного объекта, например, очень быстрые колебания яркости потоков горячего газа, стремительно вращающегося вокруг невидимого тела.

Особенно перспективной считают рентгеновскую двойную звезду V404 Лебедя, масса невидимого компонента которой оценивается не менее, чем в 6 масс Солнца. Другие кандидаты в черные дыры находятся в двойных системах Лебедь X-1, LMC X-3, V616 Единорога, QZ Лисички, а также в рентгеновских новых Змееносец 1977, Муха 1981 и Скорпион 1994. Почти все они расположены в пределах нашей Галактики, а система LMC X-3 – в близкой к нам галактике Большое Магелланово Облако.

Другим направлением поиска черных дыр служит изучение ядер галактик. В них скапливаются и уплотняются огромные массы вещества, сталкиваются и сливаются звезды, поэтому там могут формироваться сверхмассивные черные дыры, превосходящие по массе Солнце в миллионы раз. Они притягивают к себе окружающие звезды, создавая в центре галактики пик яркости. Они разрушают близко подлетающие к ним звезды, вещество которых образует вокруг черной дыры аккреционный диск и частично выбрасывается вдоль оси диска в виде быстрых струй и потоков частиц. Это не умозрительная теория, а процессы, реально наблюдаемые в ядрах некоторых галактик и указывающие на присутствие в них черных дыр с массами до нескольких миллиардов масс Солнца. В последнее время получены весьма убедительные доказательства того, что и в центре нашей Галактики есть черная дыра с массой около 2,5 млн масс Солнца.

Вполне вероятно, что самые мощные процессы энерговыделения во Вселенной происходят с участием черных дыр. Именно их считают источником активности в ядрах квазаров – молодых массивных галактик. Именно их рождение, как полагают астрофизики, знаменуется самыми мощными взрывами во Вселенной, проявляющимися как гамма-всплески.

5. Термодинамика и испарение чёрных дыр

Представления о чёрной дыре как об абсолютно поглощающем объекте были скорректированы С.Хокингом в 1975 году. Изучая поведение квантовых полей вблизи чёрной дыры, он предсказал, что чёрная дыра обязательно излучает частицы во внешнее пространство и тем самым теряет массу. Этот эффект называется излучением (испарением) Хокинга. Упрощённо говоря, гравитационное поле поляризует вакуум, в результате чего возможно образование не только виртуальных, но и реальных пар частица-античастица. Одна из частиц, оказавшаяся чуть ниже горизонта событий, падает внутрь чёрной дыры, а другая, оказавшаяся чуть выше горизонта, улетает, унося энергию (то есть часть массы) чёрной дыры. Мощность излучения чёрной дыры равна

L=\frac{\hbar c^6}{15360\pi G^2M^2}.

Состав излучения зависит от размера чёрной дыры: для больших чёрных дыр это в основном фотоны и нейтрино, а в спектре лёгких чёрных дыр начинают присутствовать и тяжёлые частицы. Спектр хокинговского излучения для безмассовых полей оказался строго совпадающим с излучением абсолютно чёрного тела, что позволило приписать чёрной дыре температуру

T_H=\frac{\hbar c^3}{8\pi kGM},

где \hbar— редуцированная постоянная Планка, c — скорость света, k — постоянная Больцмана, G — гравитационная постоянная, M — масса чёрной дыры.

На этой основе была построена термодинамика чёрных дыр, в том числе введено ключевое понятие энтропии чёрной дыры, которая оказалась пропорциональна площади её горизонта событий:

S = \frac{Akc^3}{4\hbar G},

где A — площадь горизонта событий.

Скорость испарения чёрной дыры тем больше, чем меньше её размеры. Испарением чёрных дыр звёздных (и тем более галактических) масштабов можно пренебречь, однако для первичных и в особенности для квантовых чёрных дыр процессы испарения становятся центральными.

За счёт испарения все чёрные дыры теряют массу и время их жизни оказывается конечным:

\tau=\frac{5120\pi G^2M^3}{\hbar c^4}.

При этом интенсивность испарения нарастает лавинообразно, и заключительный этап эволюции носит характер взрыва, например, чёрная дыра массой 1000 тонн испарится за время порядка 84 секунды, выделив энергию, равную взрыву примерно десяти миллионов атомных бомб средней мощности.

В то же время, большие чёрные дыры, температура которых ниже температуры реликтового излучения Вселенной (2,7К), на современном этапе развития Вселенной могут только расти, так как испускаемое ими излучение имеет меньшую энергию, чем поглощаемое. Данный процесс продлится до тех пор, пока фотонный газ реликтового излучения не остынет в результате расширения Вселенной.

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Астрономия, авиация и космонавтика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2017 - www.refsru.com - рефераты, курсовые и дипломные работы