Черные дыры

В 1934 работавшие в США европейские астрономы Фриц Цвикки и Вальтер Бааде выдвинули гипотезу – вспышки сверхновых представляют собой совершенно особый тип звездных взрывов, вызванных катастрофическим сжатием ядра звезды. Так впервые родилась идея о возможности наблюдать коллапс звезды. Бааде и Цвикки высказали предположение, что в результате взрыва сверхновой образуется сверхплотная вырожденная

звезда, состоящая из нейтронов. Расчеты показали, что такие объекты действительно могут рождаться и быть устойчивыми, но лишь при умеренной начальной массе звезды. Но если масса звезды превышает три массы Солнца, то уже ничто не сможет остановить ее катастрофического коллапса.

В 1939 американские физики Роберт Оппенгеймер и Хартланд Снайдер обосновали вывод, что ядро массивной звезды должно безостановочно коллапсировать в предельно малый объект, свойства пространства вокруг которого (если он не вращается) описываются решением Шварцшильда. Иными словами, ядро массивной звезды в конце ее эволюции должно стремительно сжиматься и уходить под горизонт событий, становясь черной дырой. Но поскольку такой объект (как говорили тогда, "коллапсар", или "застывшая звезда") не излучает электромагнитные волны, то астрономы понимали, что обнаружить его в космосе будет невероятно трудно и поэтому долго не приступали к поиску.

Поскольку никакой носитель информации не способен выйти из-под горизонта событий, внутренняя часть черной дыры причинно не связана с остальной Вселенной, происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее. В то же время, вещество и излучение, падающие снаружи на черную дыру, свободно проникают внутрь через горизонт. Можно сказать, что черная дыра все поглощает и ничего не выпускает. По этой причине и родился термин "черная дыра", предложенный в 1967 американским физиком Джоном Арчибальдом Уилером.

2. Формирование черных дыр

Самый очевидный путь образования черной дыры – коллапс ядра массивной звезды. Пока в недрах звезды не истощился запас ядерного топлива, ее равновесие поддерживается за счет термоядерных реакций (превращение водорода в гелий, затем в углерод, и т.д., вплоть до железа у наиболее массивных звезд). Выделяющееся при этом тепло компенсирует потерю энергии, уходящей от звезды с ее излучением и звездным ветром. Термоядерные реакции поддерживают высокое давление в недрах звезды, препятствуя ее сжатию под действием собственной гравитации. Однако со временем ядерное топливо истощается и звезда начинает сжиматься.

Наиболее быстро сжимается ядро звезды, при этом оно сильно разогревается (его гравитационная энергия переходит в тепло) и нагревает окружающую его оболочку. В итоге звезда теряет свои наружные слои в виде медленно расширяющейся планетарной туманности или катастрофически сброшенной оболочки сверхновой. А судьба сжимающегося ядра зависит от его массы. Расчеты показывают, что если масса ядра звезды не превосходит трех масс Солнца, то она "выигрывает битву с гравитацией": его сжатие будет остановлено давлением вырожденного вещества, и звезда превратится в белый карлик или нейтронную звезду. Но если масса ядра звезды более трех солнечных, то уже ничто не сможет остановить его катастрофический коллапс, и оно быстро уйдет под горизонт событий, став черной дырой. Как следует из формулы для rg, черная дыра с массой 3 солнечных имеет гравитационный радиус 8,8 км.

Астрономические наблюдения хорошо согласуются с этими расчетами: все компоненты двойных звездных систем, проявляющие свойства черных дыр (в 2005 их известно около 20), имеют массы от 4 до 16 масс Солнца. Теория звездной эволюции указывает, что за 12 млрд. лет существования нашей Галактики, содержащей порядка 100 млрд. звезд, в результате коллапса наиболее массивных из них должно было образоваться несколько десятков миллионов черных дыр. К тому же, черные дыры очень большой массы (от миллионов до миллиардов масс Солнца)могут находиться в ядрах крупных галактик, в том числе, и нашей. Об этом свидетельствуют астрономические наблюдения, хотя пути формирования этих гигантских черных дыр не вполне ясны.

Если в нашу эпоху высокая плотность вещества, необходимая для рождения черной дыры, может возникнуть лишь в сжимающихся ядрах массивных звезд, то в далеком прошлом, сразу после Большого взрыва, с которого около 14 млрд. лет назад началось расширение Вселенной, высокая плотность материи была повсюду. Поэтому небольшие флуктуации плотности в ту эпоху могли приводить к рождению черных дыр любой массы, в том числе и малой. Но самые маленькие из них в силу квантовых эффектов должны были испариться, потеряв свою массу в виде излучения и потоков частиц. "Первичные черные дыры" с массой более 1012 кг могли сохраниться до наших дней. Самые мелкие из них, массой 1012 кг (как у небольшого астероида), должны иметь размер порядка 10–15 м (как у протона или нейтрона).

Наконец, существует гипотетическая возможность рождения микроскопических черных дыр при взаимных соударениях быстрых элементарных частиц. Таков один из прогнозов теории струн – одной из конкурирующих сейчас физических теорий строения материи. Теория струн предсказывает, что пространство имеет более трех измерений. Гравитация, в отличие от прочих сил, должна распространяться по всем этим измерениям и поэтому существенно усиливаться на коротких расстояниях. При мощном столкновении двух частиц (например, протонов) они могут сжаться достаточно сильно, чтобы родилась микроскопическая черная дыра. После этого она почти мгновенно разрушится ("испарится"), но наблюдение за этим процессом представляет для физики большой интерес, поскольку, испаряясь, дыра будет испускать все существующие в природе виды частиц. Если гипотеза теории струн верна, то рождение таких черных дыр может происходить при столкновениях энергичных частиц космических лучей с атомами земной атмосферы, а также в наиболее мощных ускорителях элементарных частиц.

3. Свойства черных дыр

Вблизи черной дыры напряженность гравитационного поля так велика, что физические процессы там можно описывать только с помощью релятивистской теории тяготения. Согласно ОТО, пространство и время искривляются гравитационным полем массивных тел, причем наибольшее искривление происходит вблизи черных дыр. Когда физики говорят об интервалах времени и пространства, они имеют в виду числа, считанные с каких-либо физических часов и линеек. Например, роль часов может играть молекула с определенной частотой колебаний, количество которых между двумя событиями можно называть "интервалом времени".

Важно, что гравитация действует на все физические системы одинаково: все часы показывают, что время замедляется, а все линейки, что пространство растягивается вблизи черной дыры. Это означает, что черная дыра искривляет вокруг себя геометрию пространства и времени. Вдали от черной дыры это искривление мало, а вблизи так велико, что лучи света могут двигаться вокруг нее по окружности. Вдали от черной дыры ее поле тяготения в точности описывается теорией Ньютона для тела такой же массы, но вблизи гравитация становится значительно сильнее, чем предсказывает ньютонова теория.

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Астрономия, авиация и космонавтика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы