Алгебра и начало анализа

Ответ № 13

Решение тригонометрического уравнения cos(x) = a

  1. Формула для корней уравнения cos(x) = a, где , имеет вид: .
  2. Частные случаи: cos(x) = 1, x = t=15 src="images/referats/3163/image059.png">; cos(x) = 0, ; cos(x) = -1, x =
  3. Формула для корней уравнения cos2(x) = a, где , имеет вид: .

Решение тригонометрических неравенств вида cos(x) > a, cos(x) < a

  1. Для решения простейших тригонометрических неравенств вида cos(x) > a, cos(x) < a используют единичную окружность или график функции y = cos(x);
  2. Важным моментом является знание, что: cos(x) = 0, если ; cos(x) = -1, если x = ; cos(x) = 1, если x = ; cos(x) > 0, если ; cos(x) > 0, если .

№ 14

Решение тригонометрического уравнения tg(x) = a

  1. Формула для корней уравнения tg(x) = a имеет вид: .
  2. Частные случаи: tg(x) = 0, x = ; tg(x) = 1, ; tg(x) = -1, .
  3. Формула для корней уравнения tg2(x) = a, где , имеет вид:

Решение тригонометрических неравенств вида tg(x) > a, tg(x) < a

  1. Для решения простейших тригонометрических неравенств вида tg(x) > a, tg(x) < a используют единичную окружность или график функции y = tg(x).
  2. Важно знать, что: tg(x) > 0, если ; tg(x) < 0, если ; Тангенс не существует, если .

№ 15

  1. Формулами приведения называются соотношения, с помощью которых значения тригонометрических функций аргументов , , , , выражаются через значения sin , cos , tg и ctg .
  2. Все формулы приведения можно свести в следующую таблицу:

Функция

Аргумент

sin

cos

cos

sin

-sin

-cos

-cos

-sin

sin

cos

sin

-sin

-cos

-cos

-sin

sin

cos

cos

tg

ctg

-ctg

-tg

tg

ctg

-ctg

-tg

tg

ctg

tg

-tg

-ctg

ctg

tg

-tg

-ctg

ctg

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы