Оператор сдвига в гильбертовом пространстве

Спектр рассматриваемого оператора состоит из всех , для которых Если функция M(t)- обращается в нуль при некотором t, заключенном между 0 и 1, то оператор не определен на всем пространстве eight=27 src="images/referats/3110/image085.png">, так как функция уже не обязана быть непрерывной. Если же функция M(t)- не обращается в нуль на отрезке , то функция непрерывна на этом отрезке, а, следовательно, ограничена: для некоторого при всех . Следовательно, оператор ограничен, а число – регулярное для оператора А. Таким образом, спектр оператора А есть совокупность всех значений функции M(t) на отрезке [0;1], причем собственные значения отсутствуют, т.е. оператор умножения на t представляет собой пример оператора с чисто непрерывным спектром.

Замечания

1) Любой ограниченный линейный оператор, определенный в комплексном банаховом пространстве, имеющем хоты бы один отличный от нуля элемент, имеет непустой спектр. Существуют операторы, у которых спектр состоит из единственной точки (оператор умножения на число).

2) Теорема 5 может быть уточнена следующим образом. Пусть (можно доказать, что этот предел существует для любого ограниченного оператора А), тогда спектр оператора А целиком лежит внутри круга радиуса r с центром в нуле. Величина r называется спектральным радиусом оператора А.

3) Резольвентные операторы и , отвечающие точкам и , перестановочны между собой и удовлетворяют соотношению , которое легко проверить, умножив обе части этого равенства на . Отсюда вытекает, что если – регулярная точка для А, то производная от по при =, т.е. , существует (в смысле сходимости по операторной норме) и равна .

§2. Унитарные операторы. Оператор сдвига

В этом разделе будем рассматривать пространство Н со скалярным произведением, которое является частным случаем нормированного пространства.

6. Оператор сдвига. Спектр оператора сдвига

Определение 7. Ограниченный линейный оператор U в пространстве Н называется изометрическим, если он не изменяет величины скалярного произведения: длялюбых .

В этом случае, если х=у, то , или . Значит, изометрический оператор сохраняет норму элемента, а норма самого такого оператора, как следует из определения нормы, равна 1 ().

Понятие изометрического оператора можно ввести также для операторов, действующих в нормированном пространстве.

Определение 8. Ограниченный линейный оператор U в нормированном пространстве Е называется изометрическим, если он не изменяет величины нормы: длялюбых .

Лемма 1. Для того, чтобы линейный оператор U в пространстве Н был изометрическим, необходимо и достаточно, чтобы выполнялось условие: длялюбых .

Доказательство. Нужно доказать только достаточность. Для этого используем тождество . Его легко проверить, если представить левую часть в виде скалярных произведений: . Так как левая часть не изменится при замене векторов на векторы , то правая тоже не изменится, т. е. .

Определение 9. Оператор U называется унитарным, если он изометрический и имеет обратный оператор, определенный на всем пространстве Н.

Теорема 7. Спектр унитарного оператора – это множество, лежащее на единичной окружности.

Доказательство. Доказательство проведем в два этапа:

I. Докажем, что спектр унитарного оператора U содержится в единичном круге.

II. Рассмотрим обратный оператор и покажем, что он тоже унитарный. Докажем, что, если принадлежит спектру оператора U, то принадлежит спектру обратного оператора и наоборот.

Для доказательства I этапа применим теорему 4: если А – ограниченный линейный оператор в нормированном пространстве и , то – регулярная точка. Иначе говоря, спектр оператора А содержится в круге радиуса с центром в нуле. А норма унитарного оператора U, как было показано, равна 1 (). Следовательно, спектр унитарного оператора содержится в единичном круге.

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы