Предел и непрерывность функций нескольких переменных

Можно также говорить о пределе f, когда х, у → ∞:

(5)

Например, в случае конечного числа А равенство (5) надо понимать в том смысле, что для всякого ε > 0 найдется такое N > 0, что для всех х, у, для которых |x| > N, |y| > N, функция f определена и имеет место неравенство

| f (x, y) – А| &l

t; ε.

Справедливы равенства

(6)

(7)

(8)

где может быть х → ∞, у → ∞. При этом, как обычно, пределы (конечные) в их левых частях существуют, если существуют пределы f и φ.

Докажем для примера (7).

Пусть (xk, yk) → (х0, у0) ((xk, yk) ≠ (х0, у0)); тогда

(9)

Таким образом, предел в левой части (9) существует и равен правой части (9), а так как последовательность (xk, yk) стремится к (х0, у0) по любому закону, то этот предел равен пределу функции f (x, y)∙ φ (x, y) в точке (х0, у0).

Теорема. если функция f (x, y) имеет предел, не равный нулю в точке (х0, у0), т.е.

то существует δ > 0 такое, что для всех х, у, удовлетворяющих неравенствам

0 < < δ, (10)

она удовлетворяет неравенству

(12)

Поэтому для таких (x, y)

т.е. имеет место неравенство (11). Из неравенства (12) для указанных (x, y) следует откуда при A > 0 и при

A < 0 (сохранение знака).

По определению функция f(x) = f (x1, …, xn) = A имеет предел в точке

x0 = , равный числу А, обозначаемый так:

(пишут еще f(x) → A (x → x0)), если она определена на некоторой окрестности точки x0, за исключением, быть может, ее самой, и если существует предел

какова бы ни была стремящаяся к x0 последовательность точек хk из указанной окрестности (k = 1, 2, .), отличных от x0.

Другое эквивалентное определение заключается в следующем: функция f имеет в точке x0 предел, равный А, если она определена в некоторой окрестности точки x0, за исключением, быть может, ее самой, и для любого ε > 0 найдется такое δ > 0, что

(13)

для всех х, удовлетворяющих неравенствам

0 < |x – x0| < δ.

Это определение в свою очередь эквивалентно следующему: для любого ε > 0 найдется окрестность U (x0) точки x0 такая, что для всех хU(x0), х ≠ x0, выполняется неравенство (13).

Очевидно, что если число А есть предел f(x) в x0, то А есть предел функции f(x0 + h) от h в нулевой точке:

и наоборот.

Рассмотрим некоторую функцию f, заданную во всех точках окрестности точки x0, кроме, быть может, точки x0; пусть ω = (ω1, ., ωп) – произвольный вектор длины единица (|ω| = 1) и t > 0 – скаляр. Точки вида x0 + tω (0 < t) образуют выходящий из x0 луч в направлении вектора ω. Для каждого ω можно рассматривать функцию

(0 < t < δω)

от скалярной переменной t, где δω есть число, зависящее от ω. Предел этой функции (от одной переменной t)

если он существует, естественно называть пределом f в точке x0 по направлению вектора ω.

Будем писать , если функция f определена в некоторой окрестности x0, за исключением, быть может, x0, и для всякого N > 0 найдется δ > 0 такое, что |f(x)| > N, коль скоро 0 < |x – x0| < δ.

Можно говорить о пределе f, когда х → ∞:

(14)

Например, в случае конечного числа А равенство (14) надо понимать в том смысле, что для всякого ε > 0 можно указать такое N > 0, что для точек х, для которых |x| > N, функция f определена и имеет место неравенство .

Итак, предел функции f(x) = f(x1, ., хп) от п переменных определяется по аналогии так же, как для функции от двух переменных.

Таким образом, перейдем к определению предела функции нескольких переменных.

Число А называется пределом функции f(M) при М → М0, если для любого числа ε > 0 всегда найдется такое число δ > 0, что для любых точек М, отличных от М0 и удовлетворяющих условию | ММ0 | < δ, будет иметь место неравенство | f(M) – А | < ε.

Предел обозначают В случае функции двух переменных

Теоремы о пределах. Если функции f1(M) и f2(M) при М → М0 стремятся каждая к конечному пределу, то:

а)

б)

в)

Пример 1. Найти предел функции:

Решение. Преобразуем предел следующим образом:

Пусть y = kx, тогда

Пример 2. Найти предел функции:

Решение. Воспользуемся первым замечательным пределом Тогда

Пример 3. Найти предел функции:

Решение. Воспользуемся вторым замечательным пределом Тогда

Страница:  1  2  3  4 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы