Теория поля и элементы векторного анализа

4. Сумма соленоидальных векторных полей есть соленоидальное поле.

Потенциальное несжимаемое поле. Гармоническое поле

, отсюда следует =

Это поле часто называют гармоническим или полем Лапласа.

Резюме

По заданному полю мы всегда можем найти поля u и . Справедливо и обратное утверждение: по известным u и всегда можно найти искомое поле .

Пусть поле известно, тогда потенциалы u и находятся из уравнений:

Если u и известны, тогда векторное поле определяется из уравнений:

Эти уравнения всегда разрешимы.

Теорема о разложимости произвольного векторного поля

Произвольное векторное поле всегда может быть представлено в виде суммы потенциального и соленоидального полей.

Задано

где ;

и, следовательно

Потенциалы и u должны удовлетворять следующему соотношению:

1.

но дивергенция соленоидального поля должна быть равна 0.

отсюда

2.

(**)

Для определения и u получили два дифференциальных уравнения, которые всегда имеют решения и, следовательно, произвольное поле всегда можно представить в виде суммы потенциального и соленоидального полей.

Нахождение векторного поля по его характеристикам

Для нахождения и u нужно решить систему четырех уравнений

Пусть известны характеристики векторного поля

(1)

или в интегральной форме:

Будем искать распределение поля . Для этого разложим его на потенциальное и вихревое .

= + (2)

Подставляя (2) в уравнение (1), получим систему уравнений для отыскания :

(3)

Потенциальное поле удобно представить через градиент

(4)

т.к. в этом случае приходится находить всего лишь одну скалярную величину вместо трех. Подставляем (4) в первое уравнение (3), получаем уравнение

– уравнение Пуассона (5)

Его решение известно и имеет следующий вид:

. (6)

Соленоидальное (вихревое) поле будем искать через векторный потенциал

(7)

Тогда для получаем следующее уравнение:

(8)

Т.к. поле тоже векторное, то для его нахождения кроме rot необходимо задать еще одно условие на div . В качестве такого условия (которое заранее ниоткуда не вытекает) удобно выбрать div= 0 (это называется калибровкой Кирхгофа). В этом случае уравнение (8) упрощается

(8а)

и его решение имеет вид:

(9)

Следовательно, искомое поле равно:

Интегральные соотношения теории векторного поля

1. Теорема Остроградского-Гаусса

2. Теорема Стокса

3. Теорема Грина

(первая форма)

(вторая форма)

4. Интеграл от скаляра по замкнутому контуру

5. Интеграл от по объему

Страница:  1  2  3  4 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы