Методика обучения элементам теории вероятностей на факультативных занятиях в общеобразовательной школе

Итоги урока. Вопросы для повторения:

Что такое вероятность, частота события?

Сформулируйте классическое определение вероятности?

6. Постановка домашнего задания.

Задание 1. Бросили две игральные кости и сосчитали сумму выпавших очков. Что вероятнее получить в сумме: 7 или 8?

Решение. В этой задаче опыт состоит в том, что бросают две игральные кости и берут сумму выпавших очк

ов. Исходы этого опыта таковы: «в сумме выпало 2», «в сумме выпало 3» и т. д., «в сумме выпало 12». Но это не равновероятные исходы. Действительно, в сумме может получиться 2 только одним способом: 2 = 1 + 1, а в сумме может получиться 4 двумя способами: 4 = 1 + 3 и 4 = 2 + 2, т. е. шансов на то, что в сумме получится 4, больше. Теперь попробуем уточнить выбор исходов опыта и рассмотрим такие события: «на одной кости выпало kочков, а на другой — р»: k= 1, 2, 3, 4, 5, 6 и р = 1, 2, 3, 4, 5, 6. Но это тоже не равновероятные исходы опыта: интуиция подсказывает, что выпадение одинакового числа очков менее вероятно, чем разного. Чтобы получить равновероятные исходы, внесем в эту задачу некоторый дополнительный элемент, который не меняет вероятностную сторону задачи. Именно, окрасим кости в разные цвета— красный и синий. Но этот элемент позволит нам, наконец, выявить равновероятные исходы рассматриваемого опыта. Это будут следующие события: «на красной кости выпало kочков, а на синей — рочков» = (k; p). Поскольку кости отличаются только цветом, то ясно, что указанные события равновероятны и, кроме того, они образуют множество исходов нашего опыта. Остается подсчитать число всех исходов. Их 36, поскольку каждое из 6 очков, которые могут выпасть на красной кости; может быть в паре с любым из 6 очков, которые могут выпасть на синей. Теперь подсчитаем число исходов, благоприятствующих рассматриваемым событиям. Событию «сумма выпавших очков равна семи» = А благоприятствуют следующие 6 исходов: (1; 6), (2; 5),(3; 4), (4; 3), (5; 2) и (6; 1). Следовательно, AAAAAAAAAAAAAAAAAAAAAAAAAAA

Событию «сумма выпавших очков равна 8» = В благоприятствуют следующие 5 исходов: (2; 6), (3; 5), (4; 4), (5; 3), (6; 2). Следовательно,

Мы видим, что сумма очков 7 есть более вероятное событие, чем сумма очков 8. Интересно отметить, что этот факт был замечен игроками в кости. Попытки его объяснить (и решение ряда задач по страхованию и т. п.) привели к созданию математической теории — начал теории вероятностей.

Задание 2. В ящике лежат 20 одинаковых на ощупь шаров. Из них 12 белых и 8 черных. Наугад вынимают один шар. Какова вероятность того, что он окажется белым? (Точный смысл выражения «наугад вынимается шар» будет выяснен в процессе решения.)

Решение. В этой задаче рассматривается следующий опыт: из ящика наугад вынимают шар и смотрят его цвет. Сразу напрашивается множество исходов, состоящее из двух событий: Ч= «вынутый шар черный» и Б = «вынутый шар белый». Но эти исходы неравновероятны, так как белых шаров больше и шансов вынуть белый шар больше. Для выявления в этом опыте множества равновероятных исходов внесем в опыт дополнительный элемент, не нарушающий вероятностной структуры задачи, а именно, перенумеруем все шары. Белым шарам поставим в соответствие номера с 1 по 12, а черным — номера с 13 по 20. События «вынут шар с номером k»=АKуже равновероятны, так как шары на ощупь неотличимы и вынимаются наугад. Кроме того, эти 20 событий образуют множество исходов нашего опыта. Следовательно, п = 20, а интересующему нас событию В благоприятствуют первые 12 исходов, т. е. т =12. Следовательно,

Точный смысл выражения «наугад вынимается шар» состоит в том, что введенные события Akравновероятны.

Геометрическая вероятность. Урок – семинар

Семинары характеризуются, прежде всего, двумя взаимосвязанными признаками: самостоятельным изучением учащимися программного материала и обсуждением на уроке результатов их познавательной деятельности. На них ребята учатся выступать с самостоятельными сообщениями, дискутировать, описывать свои суждения. Различают уроки – семинары по учебным задачам, источникам получения знаний, формами их проведения и т.д. наибольшее распространение получили семинары, посвященные повторению, углублению и обобщению пройденного материала. Это семинары – развернутые беседы, семинары-доклады, рефераты, творческие письменные работы, поименованное чтение, семинар-диспут, решение задач, конференции. Укажем основные случаи, когда предпочтительно организовать уроки в виде семинаров:

при изучении нового материала, если ученики могут его освоить самостоятельно;

после проведения вводных, установочных и текущих лекций. На этих семинарах рассматривается дополнительный материал, приобретаются новые знания, рассматриваются исторические сведения и практические приложения изучаемого материала;

после обобщения и систематизации знаний и умений учащихся по изучаемой теме;

при проведении урока, посвященного различным методам решения задач, выполнение заданий и упражнений.

Цель проведение семинаров состоит в том, чтобы сделать теоретические обобщения, систематизировать изученный материал, отобрать основные методы и способы решения, показать связь математики (теории вероятностей) с жизнью. Проведение семинарских занятий активизирует процесс обучения, учит учащихся выступать, формирует у них познавательные и исследовательские умения, повышают математическую культуру, развивают речь и уровень общения.

Эффективность семинарских занятий в значительной мере зависит от организации его подготовки. На подготовку к семинару необходимо выделить не менее двух недель. Учащимся сообщается тема семинара, основные вопросы теории, по которым будет проведен опрос, указываются задачи, приемами решения которых должны овладеть все учащиеся, дается некоторый набор нестандартных упражнений, в процессе решения которых необходимо проявить элементы творчества. Можно предложить учащимся самим подобрать такие упражнения и показать на семинаре рациональные способы их решения. Распределяются индивидуальные и групповые задания по подготовке сообщений по истории рассматриваемого вопроса, его практических и межпредметных приложений. В процессе подготовки к семинару ученики по рекомендации учителя изучают дополнительную литературу, читают научно-популярные книги. Подготовка к семинару является для учащихся одновременно подготовкой к очередной проверочной работе и к зачету по теме.

Семинар проводится со всеми учащимися класса. Учитель-координатор подготовки и проведения семинара. Он заблаговременно определяет тему, цель и задачи семинара, планирует его проведение, формирует основные и дополнительные вопросы темы, распределяет задания между учащимися с учетом их индивидуальных возможностей, подбирает литературу, проводит консультации, проверяет конспекты. Семинарское занятие начинается вступительным словом учителя, в котором он сообщает тему, план, цель и задачи его проведения, рекомендует на что необходимо обратить внимание, что следует записать, дает другие советы. Далее обсуждаются вопросы семинара – по каждому вопросу учителю необходимо дать комментарии, акцентировать внимание учащихся на главной мысли и математической идее сообщения, делает дополнения и обобщения, отвечает на вопросы учеников. Подводятся итоги, учитель отмечает положительное, анализирует содержание, форму выступлений учеников, указывает на недостатки и пути их преодоления.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2019 - www.refsru.com - рефераты, курсовые и дипломные работы