Проблемные задания как средство формирования вычислительных навыков у младших школьников на уроках математики

Следующей особенностью является отказ от активной эксплуатации механической памяти при запоминании таких важных основ овладения вычислительными навыками, как таблицы сложения и умножения. В системе основ запоминания этих таблиц является длительная и активная деятельность, требующая постоянного обращения к ним. Именно этой особенностью диктуется то, что каждый ученик имеет право открыто пользова

ться таблицами как справочным материалом до тех пор, пока ему это необходимо.

В результате такого подхода к формированию вычислительных навыков дети приобретают прочные и осознанные навыки выполнения математических действий. Когда такая цель достигнута, необходимо перейти к наращиванию скорости выполнения вычислений.

Органическое соединение осознания основ выполнения действий и формирование вычислительных навыков приводит к тому, что материал для работы над вычислительными навыками создается самими детьми, а не дается готовым.

Отличие разных систем обучения заключается не в том, что в одних используется один путь, а в других - другой. В каждой системе присутствуют оба подхода, различие же в том, каково соотношение этих путей. В системе, направленной на общее развитие учащихся, главным является именно косвенный путь формирования навыков, прямой же используется тогда и в той мере, как это необходимо. В связи с этим, системы обучения имеют различные подходы формирования вычислительных навыков.

Так, например, традиционная система предполагает ряд этапов, направленных на работу над каждым отдельным приемом:

1. Подготовка к введению нового приема. На этом этапе создается готовность к усвоению вычислительного приема, а именно: учащиеся должны усвоить те теоретические положения, на которых основывается теоретический прием. Центральное же звено при подготовке к введению нового приема - овладение учеником основными операциями, которые войдут в новый прием.

2. Ознакомление с вычислительным приемом. На этом этапе ученики усваивают суть приёма: какие операции надо выполнять, в каком порядке и почему именно так можно найти результат арифметического действия. Степень самостоятельности учащихся должна увеличиваться при переходе от приема к приему другой группы.

3. Закрепление знания приема и выработка вычислительного навыка. На данном этапе учащиеся должны твердо усвоить систему операций, составляющих вычислительный прием, и предельно быстро выполнять эти операции, то есть овладеть вычислительным навыком.

В процессе работы важно предусмотреть ряд стадий в формировании у учащихся вычислительных навыков.

На первой стадии закрепляется знание приема: учащиеся самостоятельно выполняют все операции, составляющие прием, комментируя выполнение каждой из них вслух и одновременно производя развернутую запись, если она была предусмотрена на предыдущем этапе. На второй стадии происходит частичное свертывание выполнения операций: учащиеся про себя выделяют операции, обосновывают выбор и порядок их выполнения, вслух же они проговаривают выполнение основных операций, то есть промежуточных вычислений. На третьей стадии происходит полное свертывание выполнения операций: учащиеся про себя выделяют и выполняют все операции, то есть здесь происходит свертывание и основных операций. Четвертая стадия характеризуется предельным свертыванием выполнения операций: учащиеся выполняют все операции в свернутом плане предельно быстро, то есть они овладевают вычислительными навыками. Это достигается в результате выполнения достаточного числа тренировочных упражнений.

Названные стадии не имеют четких границ: одна постепенно переходит в другую.

В системе Л.В. Занкова формирование навыков проходит три принципиально различных этапа.

Первый этап - осознание основных положений, лежащих в фундаменте выполнения операции, создание алгоритма ее выполнения. На этом обязательно прослеживается, оценивается и создается каждый шаг в рассуждениях детей, устные рассуждения переводятся в запись математическими знаками. Отсюда вытекает характерный признак этого этапа - подробная запись выполнения операции, с которой в данный момент работают ученики. На этом этапе практически не используется прямой путь. Он возникает только при выполнении промежуточных, знакомых детям операций. Результатом этого этапа является выработка алгоритма выполнения операции и его осознание.

Главным направлением второго этапа является формирование правильного выполнения операции. Для достижения этой цели необходимо не только использование выработанного на 1 этапе алгоритма выполнения операции, но, может быть, в еще большей степени, свободная ориентация в ее нюансах, умение предвидеть. К чему приведет то или иное изменение компонентов операции. В силу этого на втором этапе используются оба пути формирования навыков, однако косвенный путь продолжает быть ведущим, прямой же используется в качестве подчиненного.

Третий этап формирования навыка нацелен на достижение высокого темпа выполнения операции. Именно на этом этапе на первый план выходит прямой путь формирования навыка. Главная задача учителя - построить работу так, чтобы дети хотели выполнять необходимые вычисления и получали от этого удовольствие.

Понятие проблемного обучения. Сущность понятия проблемные задания

Традиционный тип объяснительно-иллюстративного обучения в общеобразовательной школе строится, как система усвоения учащимися готовых знаний. Эти знания ими осмыслены и закреплены в памяти и по необходимости могут быть воспроизведены. Но при таком обучении мало внимания обращается на развитие творческого мышления ученика. В 60-70-е годы педагоги и психологи (за рубежом Дж. Брунер - США, В. Оконь - Польша; в нашей стране М.Н. Скаткин, И.Я. Лернер, М.И. Махмутов, A.M. Матюшкин, А.В. Брушлинский и др.) стали разрабатывать новое направление в методике обучения, получившее название проблемного.

Будущее образования находится в тесной связи с перспективами проблемного обучения. И цель проблемного обучения широка: усвоение не только результатов научного познания, но и самого пути процесса получения этих результатов; она включает еще и формирование познавательной самостоятельности ученика и развития его творческих способностей (помимо овладения системой знаний, умений, навыков и формирования мировоззрения).

Итак, проблемное обучение - это современный уровень развития дидактики и передовой педагогической практики. Проблемным называется обучение потому, что организация учебного процесса базируется на принципе проблемности, а систематическое решение учебных проблем - характерный признак этого обучения.

В педагогической литературе существует несколько определений этого явления.

В. Оконь под проблемным обучением понимает «совокупность таких действий, как организация проблемных ситуаций, формулирование проблем, оказание учеником необходимой помощи в решении проблем, проверка этих решений и, наконец, руководство процессом систематизации и закрепления приобретенных знаний».

Д.В. Вилькеев под проблемным обучением имеет в виду такой характер обучения, когда ему придают некоторые существенные черты научного познания .

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2019 - www.refsru.com - рефераты, курсовые и дипломные работы