Зонная модель твердого тела. Уравнение Шредингера для кристалла
Любое твердое тело представляет собой систему, состоящую из огромного числа ядер и ещё большего числа электронов. Современное состояние математической физики позволяет утверждать, что целый ряд сведений о свойствах такой системы, в том числе и об энергетическом спектре можно получить из решения уравнения Шредингера, описывающего стационарные состояния этой системы. В этом случае уравнение Шре
дингера имеет вид:
Где m и M соответственно массы электронов и ядер; ri и Rj – радиус-векторы i-го электрона и j-го ядра; Zj и Zn – атомные номера ядер; Rjn , rik, rij – расстояния между соответствующими ядрами и электронами; Е – полная энергия кристалла; Ψ – собственная волновая функция системы электронов и атомов.
В приведенном уравнении первое слагаемое описывает кинетическую энергию электронов, второе – кинетическую энергию ядер. Множители при волновой функции в следующих трёх слагаемых описывают соответственно, потенциальную энергию взаимодействия ядер с друг другом, электронов друг с другом и энергию взаимодействия электронов с ядрами.
Сегодня неизвестны способы точного решения уравнения Шредингера, так как для кристалла волновая функция Ψ зависит от огромного числа (1024-1025) независимых переменных ( в 1см2 содержится примерно 5∙1022 ядер атомов, каждое ядро содержит большое количество электронов).
Теория должна найти разумные допущения, которые позволят решать данное уравнение, сохранить его принципиальные черты, отличающие кристалл от отдельного изолированного атома.
Прежде чем рассматривать свойства твердых тел необходимо рассмотреть закономерности образования твердого тела из отдельных изолированных атомов.
Обобществление электронов в кристалле.
Для того чтобы понять особенности явлений, имеющих место в твердых телах, рассмотрим следующий идеализированный пример. Возьмем атом натрия.
Расположим N атомов натрия на больших расстояниях друг от друга в трехмерном пространстве так, чтобы они образовали в значительно увеличенном виде кристаллическую решетку натрия. Так как расстояния между атомами r значительно больше параметра решетки а( а= 4.3Å; r>>а), то взаимодействием между атомами можно пренебречь.
На рисунке каждый атом изображен в виде потенциальной ямы, внутри которой проведены энергетические уровни 1s, 2s и 2p - укомплектованы у натрия полностью, уровень 3s – наполовину, остальные уровни, расположенные выше уровня 3s – свободны.
Изолированные атомы отделены друг от друга потенциальными барьерами шириной r. Высота барьера для электронов, находящихся на разных уровнях различна. Она равна расстоянию от этих уровней до нулевого уровня 00. Потенциальный барьер препятствует свободному переходу электронов от одного атома к другому.
Рис. Ррасположение атомов натрия в линейной цепочке. d-параметр решетки.
Качественная картина распределения плотности вероятности обнаружения электронов на данном расстоянии от ядра показывает, что максимумы этих кривых примерно соответствуют положению боровских орбит для эти электронов.
Теперь начнем сближать атомы натрия таким образом, чтобы в конце однородного сжатия они находились бы на расстояниях, равных параметру решетки. По мере сближения атомов взаимодействие между ними возрастало и достигло максимальной величины при образовании кристалла. При образовании кристалла потенциальные кривые, отделяющие соседние атомы, частично перекрываются и дают результирующую потенциальную кривую (1α2), проходящую ниже нулевого уровня 00. При сближении атомов уменьшается не только ширина барьера, но и его высота. При этом оказывается, что высота барьера между атомами в кристалле оказывается даже ниже первоначального положения уровня валентных электронов 3s. Таким образом, валентные электроны получают возможность практически беспрепятственно переходить от одного атома к другому.
Об этом свидетельствует и характер волновых функций этих электронов: они перекрываются настолько сильно, что дают электронное облако практически равномерной плотности, чему соответствует состояние полного обобществления валентных электронов, при котором вероятность обнаружения их в любом месте решетки совершенно одинакова.
Электронные облака внутренних оболочек атома не перекрываются вследствие чего состояние внутренних электронов в кристалле остаётся фактически таким же, как и в изолированных атомах.
Коллективизация валентных электронов является прямым следствием физической эквивалентности всех ионов решётки и поэтому каждый электрон принадлежит одновременно всем ионам решётки с равной вероятностью может быть обнаружен вблизи любого из них. Такие электроны образуют в кристалле электронный газ.
Основные приближения зонной теории.
1. Зонная теория твёрдых тел является моделью изучения электронных свойств идеальных периодических структур кристаллов. В этом суть первого приближения.
Ранее приведённое уравнение Шредингера удобно представить в виде:
где
- гамильтониан кристалла;
- собственная волновая функция гамильтониана;
Е – энергия кристалла.
Оператор Гамильтона включает в себя: оператор кинетической энергии электронов - ; оператор кинетической энергии ядер - ; потенциальную энергию попарного взаимодействия электронов , ядер , электронов с ядрами - . В этих обозначениях уравнение имеет вид:
2. Второе упрощение называют упрощением Борна-Оппенгеймера, при котором всю систему частиц разделяют на электроны и атомные ядра и рассматривают их кинетические энергии в равновесном состоянии. Пользуясь законом равенства количества движения в системе ядро-электрон без учёта количества движения от внешнего источника можем записать:
Для водорода M=1840m. Из-за разницы масс будет и разница в скоростях теплового движения ядер и электронов. Ядра можно считать неподвижными по сравнению с электронами. Таким образом, движение электронов и ядер можно считать независимым, проходящим без обмена энергией между электронной и ядерной подсистемами частиц. В этом и состоит смысл адиобатического приближения (А.И. Ансельм “Введение в теорию полупроводников”, Физмат. изд. 1963 – в этой книге можно найти много интересного о методах решения уравнения Шредингера для кристалла).
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
- Аппаратура для терапии постоянным и НЧ током
- Мультипликативность стационарного распределения в открытых сетях с многорежимными стратегиями обслуживания
- Проектирование радиоэлектронных средств с помощью ЭВМ
- Система управления микроволновой печью
- Схема процесса автоматизированного проектирования РЭС. Структура и классификация проектных задач
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем