Расчет и конструирование газоразрядной индикаторной панели переменного тока

Рис. 3.5

Теперь требуется найти ширину электродов индикации а. Согласно [2],[3] ширина электродов влияет как на яркость ячейки, так и на ее напряжение зажигания. Пусть D мкм – оптимальная длина газоразрядного промежутка, тогда минимальное напряжение зажигания ячейки будет при описываться следующим уравнением [4]:

p>

(*)

Где а – ширина электрода мкм, L-толщина электрода мкм, A 1/(см*мм рт. ст) – постоянная в уравнении Таундсена для газа, γ - КВИИЭ диэлектрика, которым покрыты электроды. В качестве катодов могут использоваться материалы, отвечающие требованиям высокой эмиссионной способности и устойчивые к распылению В качестве материалов электродов выбирается керметное покрытие MgO-Ni, так как, согласно [4], применение такой смеси позволило снизить время запаздывания разряда на величину, эквивалентную снижению перенапряжения на 15-20%. Наилучшие параметры электрод приобретает после ионной обработки в плазме разряда с плотностью тока 15-20мА/см2 в течение 1.5-2часов. КВИЭЭ γ равен 0.2. Толщина электрода L выбирается исходя из имеющейся тонкопленочной технологии и варьируется 1-10мкм [2]. В настоящей работе L=8мкм.

Подставляя имеющиеся данные в (*) и решая с помощью пакета MathCad находим, что ширина электрода a=100мкм±3%.

В работе [4] установлено, что толщина М и диэлектрическая проницаемость ε диэлектрика, покрывающего поддерживающие электроды, обуславливает превышение внешнего напряжения, необходимого для возникновения разряда в ячейке над напряжением, необходимым для возникновения разряда в газовом промежутке. Следовательно при больших значениях М и ε ячейка будет потреблять большую мощность. С другой стороны при недостаточной толщине диэлектрика, заряда, накапливающегося в нем, будет недостаточно для пробоя. Эмпирически установлено, что при значениях ε<5 и M=40-50мкм разница не превысит 30%, что является допустимым значением. Потому выбираем среднюю толщину – M=45 мкм.

Остается рассчитать лишь ширину диэлектрических барьеров с. Сделать это можно по инженерной формуле, приведенной в [2]:

Где – ψ эмпирический коэффициент, зависящий от газового наполнения и находяшийся в пределах [2]

Таким образом, для обеспечения заданной яркости в 500 Кд/м2, ширина диэлектрического барьера с = 50,2 мкм.

На стеклянные пластины накладывается несколько условий:

1. Быть непрозрачными для УФ света

2. Как можно более малая толщина но стекло должно выдерживать давление в 200 Торр.

3. Иметь малый коэффициент преломления.

Выберем кварцевое стекло типа КИ толщиной 15мм. [http://kvartzs.narod.ru/1.html] «Стекло кварцевое оптическое, прозрачное в видимой и инфракрасной областях спектра, без полосы поглощения в интервале длин волн 2600-2800 нм.»

На этом расчет габаритов ячейки завершается.

4. Выбор люминофора

Совершенствование люминесцентных ламп и плазменных цветных дисплеев в значительной мере зависит от выбора фотолюминофоров. Как правило, люминофорные экраны возбуждаются электронными или фотонными пучками соответствующих энергий. Отсюда следуют достаточно стандартные требования к подобным системам накачки, которые определяют эффективность светоизлучающих приборов в целом. Энергия бомбардирующих люминофор электронов или квантов света должна обладать определенной селективностью и соответствовать спектрам фотовозбуждения люминофоров, излучающих в заданных участках спектра для генерации света с определенными цветовыми характеристиками. Интенсивность высвечивания цветных люминофоров будет зависеть от эффективности выбранной системы накачки, квантового выхода люминофоров и геометрических характеристик нанесения люминофорных и технологических тонкопленочных покрытий, формирующих люминофорный экран для вывода излучения с заданными спектральными параметрами. При использовании R, G, B люминофоров в цветных плазменных дисплеях используется схема широтно-импульсной модуляции для кодирования уровня яркости при формировании полутоновых изображений. В этом случае требуется, чтобы люминофор успевал высветить всю вложенную в него энергию за период следования импульсов ультрафиолетовой накачки. Следовательно, важной характеристикой становится время высвечивания люминофоров.

В качестве люминофоров выберем стандартные отечественные:

ФГИ-455-2 (В-синий), состав:

ФГИ-528-1 (G-зеленый),

ФГИ-627/593-1 (R- красный).

Рис. 5.1.

Проведем расчет квантовой и спектральной эффективности. Квантовая эффективность фотолюминофора определяется тем, сколько фотонов видимого света возбуждает один фотон УФ спектра. Для обычных фотолюминофоров квантовый выход близок к единице, т.е. один фотон УФ спектра, достигший центра возбуждения люминофора, вызывает излучение одного фотона видимого света. Спектральная эффективность люминофора определяется соотношением длин волн возбуждения и излучения. Для рассмотренных ниже люминофоров, при длине волны УФ излучения 190 нм, квантовая эффективность составит:

· для красного люминофора Eqr= 190/593=0.327

· для зеленого люминофора Eqg=190/528=0.360

· для синего люминофора Eqb=190/455=0.418.

Спектры люминесценции получены [1] для этих марок люминофоров при возбуждении на длине волны 193 нм приведены на рис Спектр люминесценции для люминофоров ФГИ.455.2 (синий) и ФГИ.528.1(зеленый) представляет собой широкую полосу с максимумами на 457 нм и 523 нм соответственно. Спектр люминесценции люминофора ФГИ.627 (красный) представляет собой систему узких полос. Последнее обстоятельство накладывает повышенные ограничения на согласование спектра излучения разряда со спектром фотопоглощения люминофора с целью минимизации потерь при преобразовании энергии ультрафиолетового излучения разряда в видимое излучение, испускаемое люминофором. Следует отметить недостаточную яркость свечения зеленого люминофора. Интенсивности свечения, проинтегрированные по спектру излучения при одинаковых условиях накачки, соотносятся как 1:0.45:0.7 для синего, зеленого и красного люминофоров, соответственно.

Рис. 5.2 Спектр излучения синего люминофора ФГИ - 455. 2.

Рис. 5.3 Спектр излучения зеленого люминофора ФГИ - 428. 1.

Страница:  1  2  3  4 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы