Принятие решений
Введение
Теория принятия решений (ТПР) – новое научное направление, объединяющее, казалось бы, далекие друг от друга области научного знания (психологию, нейрофизиологию, биологию, кибернетику, математику и др.).
Проблема принятия решения (ПР) проявилась как научно-практическая задача при построении автоматизированных систем управления (АСУ) в различных отраслях народного хозяйства (п
ромышленности, транспорте, строительстве и др.). При построении АСУ возникла необходимость воспроизведения мыслительных функций мозга на вычислительных машинах, т.е. проблема построения искусственного интеллекта. При этом центром внимания естественно встала проблема выявления и познания механизмов мозга на всех этапах его функционирования (от восприятия к действиям), построение на этой основе непротиворечивых теорий, проверяемых через наблюдение и эксперименты.
В решении проблемы воспроизведения высших мыслительных функций мозга на вычислительных машинах наиболее существенный вклад может дать естественнонаучный, системно-структурированный подход, эффективность которого подтверждалась в разное время выдающимися результатами (синтез мочевины, самосборка некоторых вирусов и пр.). Первоначально проблема ПР рассматривалась как раздел общей теории управления, но постепенно она приобрела самостоятельное значение. Это повлекло за собой выделение и разработку разных уровней и аспектов ПР, а именно: биологических, психологических, кибернетических, нейрофизиологических и т.д. При биологическом подходе к проблеме ПР рассматриваются вопросы функциональной целесообразности и адаптивного поведения живых систем. Психологический аспект принятия решения человеком затрагивает целый комплекс проблем: соотношения процесса ПР с нейрофизиологическим и поведенческим уровнями жизнедеятельности человека.
При кибернетическом подходе к проблеме ПР исследуются принципы функционирования различных систем, принимающих решения (живые системы, системы «человек-машина», коллективы людей, автоматы), рассматриваются подходы к построению кибернетических моделей таких систем.
Заинтересованность представителей различных областей научного знания в разработке теории ПР создает определенные трудности (в каждой науке формируется свой специфический подход к проблеме, используется свой язык, понятийный аппарат и методы исследования). Но, с другой стороны, объединение в рамках общей теории представителей разных наук создает благоприятные условия для плодотворных научных исследований. Существует ряд общих вопросов, требующих совместных исследований специалистами различных областей, к ним относятся:
1. Определение понятия «принятие решения». Специалисты разных наук вкладывают в этот термин различный смысл. Область явлений, о которых можно говорить как о принятии решений, еще не определена достаточно строго.
2. Познание механизмов ПР в деятельности человека и в биологических системах. Изучение поведения биологических систем и целенаправленной деятельности человека должно быть основной линией в разработке проблемы ПР. Существенная роль принадлежит исследованиям коллективных решений, процессов и механизмов ПР группами людей, объединенных совместной деятельностью.
3. Формализация процесса ПР (выбор целесообразного языка).
4. Взаимодействие человека и информационно-логических машин в процессе ПР.
Комплексные исследования по проблеме ПР у нас в стране в течение многих лет возглавлял академик П.К. Анохин.
В этой работе кратко освещены такие разделы ПР, как элементы теории эвристических решений, принятие решений в распознавании образов, общая математическая теория принятия решений с использованием байесовского подхода.
1. Элементы теории эвристических решений (ЭР)
1.1 Строгие и эвристические методы ПР
Среди методов ПР выделяют два основных вида: строгие и эвристические методы. Эффективное использование ЭВМ для решения научно-технических задач основано, главным образом, на ряде допущений, упрощающих представления о моделируемых реальных процессах. Такое абстрагирование позволяет подобрать для рассматриваемого физического процесса адекватную математическую модель, разработать на этой основе соответствующие алгоритмы, составить программу и с помощью ЭВМ получить приемлемое решение. Существенный момент в таком способе решения – простота моделируемого процесса, однозначность решения и точное знание степени его применимости.
Но в ряде случаев трудно, а иногда и невозможно построить адекватную математическую модель исследуемого процесса, что связано с его сложностью, отсутствием необходимой и достаточной информации. При этом всякое упрощение такого процесса, его идеализация, попытка абстрагирования для использования подходящего математического аппарата часто выхолащивает сущность исследуемого процесса и снижает ценность результата.
Между тем человек, встречаясь в своей повседневной практике с подобными задачами, решает их без применения сложных математических средств и без достаточного количества текущей информации. Более того, иногда принимаемые им решения оказываются лучше и эффективнее решений, полученных с помощью математических методов. Эти соображения выдвигают необходимость разработки качественно новых методов решения задач с помощью ЭВМ путем моделирования отдельных сторон процесса творческого мышления человека, методов, обеспечивающих эффективное решение особо сложных задач, в частности, в условиях неполной текущей информации. Такие задачи возникают в экономике, медицине, при исследовании Космоса, где мы имеем дело с функционированием систем, зависящих от многих разнообразных переменных.
Методы решения таких задач в условиях, когда из-за их сложности и недостаточности информации нельзя точно очертить границы их применимости и оценить допустимые ошибки, называются эвристическими.
Эвристические методы предполагают изучение принципов переработки информации, осуществляемой человеком на различных этапах его деятельности при решении конкретной задачи, и построение на этой основе программ, реализуемых на ЭВМ. Этот процесс – эвристическое программирование.
Характерная особенность эвристического программирования – широкое изучение приемов работы человека при решении задач в условиях неполной информации, накопление особенностей о процессах решения аналогичных задач (формирование опыта) и моделирование всего процесса переработки информации человеком путем расчленения его на так называемые элементарные информационные процессы.
Поскольку в основе эвристических методов лежит процедура поиска, эвристическое программирование иногда обеспечивает решение задачи в условиях неопределенности. Однако после выбора перспективного направления следует строгое решение, которое и приводит к окончательному результату. Именно сочетание обоих методов (эвристического и строгого) обусловливает эффективность рассматриваемого процесса в рамках конкретной человеческой деятельности.
Нет резкой и четкой границы между эвристическими и строгими методами. Более того, по мере развития науки многие эвристические методы решения формализуются, приобретают необходимую строгость и переходят в класс строгих. Пример: решение задач кавалером де Мере (XVII в.), эвристические приемы, интуиция которого по отгадыванию очков при игре в кости базировались на наблюдениях. Создание теории вероятностей позволило формализовать этот процесс отгадывания, дало ему количественную оценку. (Задача кавалера де Мере: что вероятнее, при одном бросании четырех игральных костей хотя бы на одной получить единицу или при 24 бросаниях двух игральных костей хотя бы один раз получить две единицы).
Другие рефераты на тему «Менеджмент и трудовые отношения»:
- Информационно-аналитическое обеспечение управления персоналом
- Диверсификация менеджмента
- Особенности организации и управления подготовкой и переподготовкой кадров для крупных страховых компаний
- Управление предприятием по оказанию услуг и исследование его систем управления
- Опрос на изучение сложившейся на предприятии системы мотивации персонала