Датчики управления двигателем автомобиля

Введение

Совершенно естественно, что в последние годы электронное содержимое машин непрерывно увеличивается, поскольку все больше бортовых механических систем преобразуется в электрические, электронные и мехатронные системы. Это происходит как для максимальной оптимизации и координации работы двигателя и других автомобильных систем, ответственных за повышение топливной эффективност

и и снижение эмиссии, так и в связи с повышенным спросом на более комфортабельные автомобили, чья надежность определяется непрерывным ужесточением норм эмиссии, стандартов безопасности и влиянием рыночной ситуации. В частности это развитие привело к появлению гибридного привода. Но мне, автору этого реферата очень смешно и печально читать публикации с фразами, например «Гибридный привод Lexus – это поистине инновационное мышление, опережающее время». О каком инновационном мышлении идёт речь, если в США гибридные автомобили начал разрабатывать Виктор Воук в 60-е - 70-е годы.

Значительную часть автоэлектроники составляют датчики, необходимые для контроля корректного и согласованного функционирования автомобильных систем. И спрос на подобные устройства, отличающиеся точностью и надежностью, будет постоянно увеличиваться. Одна из важнейших тенденций в развитии цифровых импульсных датчиков скорости и положения, наблюдавшаяся на рубеже веков, — переход от пассивных аналоговых (индуктивных) к цифровым (активным) устройствам.

Существует еще одна сенсорная стратегия электроники, которая может оказать весьма заметное влияние на использование датчиков скорости и положения в системах контроля двигателя, — это осуществление прямого управления давлением в двигателе, что связано с необходимостью установить более жесткие нормы регулирования эмиссии. Реализация данной стратегии приводит к разработке датчиков, способных выполнять прямой мониторинг процессов горения в двигателе. Соответственно, такие традиционные датчики и технологии мониторинга, как датчик массового расхода воздуха, датчик детонации и датчик распределительного вала, сегодня уже считаются устаревшими. Вот почему в настоящее время OEM-производители электроники прорабатывают возможность исключения этих типов датчиков из своих новых проектов.

Системы Powerdrivetrain (или Powertrain, или engine и drivetrain) — наибольший и стабильный рыночный сегмент, в том числе по потреблению автомобильных датчиков. Системы управления двигателем и трансмиссией, включая датчики, микроконтроллеры, ИС контроля питания, составляют приблизительно треть всей электроники автомобиля. Причем количество датчиков Powerdrivetrain относительно общего числа автомобильных датчиков превышает 50%. Предполагается, что такое положение не изменится в течение первого десятилетия XXI века, хотя и ожидается заметное снижение темпов, роста продаж датчиков этой группы на фоне других сегментов автомобильной сенсорной платформы.

Важнейшими задачами электроники Powertrain является повышение эффективности способов и характеристик управления и оптимизация работы двигателя — достижение максимальной топливной эффективности и снижение эмиссии. В новых автомобилях электронные системы управления двигателем Powertrain осуществляют такие основные функции управления, как оптимизация впрыска и сгорания топлива посредством контроля циклов инжекции, сжатия и зажигания.

Работа систем контроля двигателя и эмиссии взаимосвязана: практически все датчики систем контроля двигателя работают на обе системы (в первую очередь датчик концентрации кислорода, а также датчики массового расхода воздуха и давления).

Оптимизация процессов сгорания (топливная эффективность) предоставляет возможность экономить дорожающее бензиновое топливо. Оптимальное сгорание позволяет уменьшать эмиссию вредных выхлопных газов CO, HC и NOx, а также частиц сажи, которые образуются при сгорании бензинового или дизельного топлива, что контролируется датчиками обратной связи систем контроля двигателя и нейтрализации выхлопов.

К появлению многочисленных новых разработок датчиков контроля эмиссии приводит и появление автомобилей следующего поколения — гибридных, в которых обычный двигатель внутреннего сгорания комбинируется с электродвигателем, и машин, работающих на природном газовом или водородном топливе (fuel cell vehicles), также нуждающихся в датчиках и системах рециркуляции.

Новые тенденции и перспективные технологии автомобильных

датчиков

Датчики скорости и положения

Современные разработки активных датчиков положения и скорости (по статистике они составляют не менее трети от общего числа автомобильных датчиков и, как правило, решают именно задачи систем Powerdrivetrain) сфокусированы на интеграции сенсорных ячеек с обработкой сигнала в полупроводниковых КМОП ИС.

Примерами являются датчики положения распределительного и коленчатого валов, дроссельной заслонки, датчик скорости автомобиля, датчик клапана EGR (рис. 1).

Рис. 1. Типичные примеры современных датчиков положения и скорости систем Powertrain и контроля эмиссии: а — активный датчик фазы (распределительного вала) Bosch; б — активный датчик коленчатого вала SiemensVDO; в — активные датчики скорости и положения систем контроля двигателя Honeywell; г — датчик положения дроссельной заслонки SS10459 Delphi; д — датчик положения дроссельной заслонки на основе эффекта Холла BEI; е — потенциометрический датчик положения педали 1029 Wabash (5 млн. циклов); ж — индуктивный датчик положения педали Hella; з — потенциометрический датчик положения клапана EGR Alps Automotive (5 млн. циклов); и — бесконтактный датчик линейного положения (педали и EGR) SiemensVDO; к — программируемые бесконтактные датчики углового положения SiemensVDO на основе МР-технологии; л — бесконтактный датчик углового положения на основе МР-технологии или Triaxis SiemensVDO; м — бесконтактные магнитоуправляемые датчики RFK Novotechnik; н — датчики АМР с магнитным ротором Continental Teves для коробки передач, АБС и контроля скорости двигателя; о — датчик скорости коробки передач на основе эффекта Холла, МР или ГМР SSI Technologies; п — цифровые датчики скорости Delphi; р — модульные датчики нулевой скорости MHS Honeywell

Сегодня индустрия полупроводниковых датчиков уже использует второе поколение активных сенсорных технологий, включающих схемы компенсации ошибок и обработки сигнала. Новейшее направление — развитие новых цифровых интерфейсов (например, SPI) для аналоговых линейных датчиков, оснащенных блоком управления, которые характеризуются как повышенной помехоустойчивостью, так и большей эффективностью коммуникации в реальном времени. Наиболее популярные типы подобных аналоговых угловых датчиков положения Powertrain — датчики положения дроссельной заслонки и педали акселератора. Прежде открытие дросселя выполнялось прямо пропорционально нажатию педали акселератора, а сейчас этому помогает электрический двигатель, получая управляющий сигнал от ECU, на вход которого поступают сигналы с датчиков положения дроссельной заслонки и педали. Актуальность цифрового интерфейса иллюстрирует и датчик рулевого колеса, используемый для контроля динамики автомобиля.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16 


Другие рефераты на тему «Транспорт»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы