Спиральные антенны

Частотная характеристика входного сопротивления антенной системы сотового телефона.

Рисунок 3.4.6. Частотная характеристика входного сопротивления антенной системы сотового телефона

Диаграммы направленности при вынутом штыре усиливают излучение в азимутальной плоскости благодаря действию несимметричного в

ибратора.

Анализ антенной системы сотового телефона в рабочем режиме (TP) с открытой крышкой и вынутым штырем

Этот режим наиболее часто тестируется. Измерения показывают, что в этом режиме (рис 3.4.7) направленность антенны в азимутальной плоскости хуже, чем с закрытой крышкой телефона. Открытая крышка действует и как вторичный отражатель, и как поглотитель мощности радиоволн, излучаемых антенной. В краях крышки, параллельных штырю антенны, наводятся токи, которые могут формировать изрезанную ДН.

Частотная характеристика значительно отличается от экспериментально измеренной, поскольку программа IE3D не позволяет описывать трёхмерное диэлектрическое покрытие.

Рисунок 3.4.7. Частотная характеристика значительно отличается от экспериментально измеренной, поскольку программа IE3D не позволяет описывать трёхмерное диэлектрическое покрытие

Из анализа ДН видно, что крышка экранирует излучение штыря антенны. Она действует как экран на дальнее поле и значительно (на 4 дБ) уменьшает усиление в направлении за крышкой. Этот вывод подтверждается экспериментально.

Экспериментальные измерения диаграммы направленности в безэховой камере показали её сильное изменение по величине при открытой крышке. Методика измерения диаграммы направленности состоит в измерении чувствительности телефона на системном уровне (прибором, имитирующем базовую станцию). В данном случае регулируется общее усиление по петле усиления: передатчик базовой станции, передающая антенна, сотовый телефон, ориентированный в пространстве, и аппаратура приёмника базовой станции. При открытой крышке чувствительность некоторых телефонов падает до очень низкого уровня, и система не имеет возможности её измерить.

Глава 4. Расчёт диаграмма направленности плоских спиральных антенн

4.1 Типы нормальных волн и свойства симметрии спиральных антенн

Известные типы спиральных структур обладают либо симметрией вращения, либо винтовой симметрией, являющейся сочетанием симметрии вращения и трансляционной симметрии. Различные видыгеометрической симметрии замедляющихсистем и вытекающие изнее следствия относительно свойств электромагнитных полей. Воспользуемся основными известными общими положениями для рассмотрения электродинамических свойств спиральных структур. Напомним лишь, что симметрия вращения заключаетсяв свойстве спирали совмещаться с собой при поворотевокруг некоторой оси на угол 2π/М, где М — целое число, равное числу заходов (плечей ) спирали. Эта симметрия характеризуетсяповоротной осьюсимметрии См.

При трансляционной симметрииспираль совмещаетсясама с собой при смещении ее вдоль оси на величину S/M, где S — шаг спирали. При винтовой симметрии спираль совмещается сама с собой при повороте вокруг оси на угол 2π/М и одновременном перемещениивдоль оси на S/M. Такая симметрия характеризуетсявинтовой осью симметрии Cм1. Точки структур, совмещающиеся при преобразованиях симметрии, называютсясимметричными.

Все известные типы спиралей имеют симметрию вращения, а винтовую симметрию – лишь цилиндрическиебесконечные спирали с постоянным шагом S. Такие спирали ниже называются регулярными. Однозаходные плоские, конические и цилиндрические спирали имеют поворотную ось симметрии С1, двухзаходные — ось С2 и т. д. Регулярная однозаходная спираль имеет винтовую ось симметрии С11, двухзаходная—ось C21 и т. д.

Хотя конечная цилиндрическая спираль с постояннымшагом и не имеет трансляционной и винтовой симметрии, ееможно рассматривать как отрезокрегулярной спирали с этимидвумя видами симметрии, в котором существуют прямые и обратныеволны. При анализе такой антенныможно использовать результаты, полученные для бесконечно длинной спирали.

В практическихконструкциях спиральных антеннчасто применяется диэлектрик в виде опорных цилиндров, на поверхность которых укладываютсязаходы. Если диэлектрик однороден в азимутальном и продольном направлениях, то свойства симметрии спиральной структуры не изменяются.

Для уменьшения поперечных размеров спиральной антенны можно использовать замедляющие системы, уменьшающие фазовуюскорость тока в заходах спирали. Такая замедляющая система может бытьоднородной в азимутальном и продольном направлениях. Кроме того, проводник спирали может представлять собой замедляющую систему (например, спираль малого радиуса или зигзагообразную ленту), причем однородную вдоль спирального направления. В этих случаях свойства симметрии структуры также не изменяются. В дальнейшем предполагается,что и диэлектрик, и замедляющие системы не нарушают свойств симметрии.

Рассмотрим свойства полей в системах с различной симметрией.

Пусть рассматриваемая система имеет поворотную ось симметрии См, т.е. представляет собой М-заходную произвольную спираль — плоскую, коническую или цилиндрическую.

Как показано, поле произвольным образом возбужденной замедляющей системы с поворотной осью симметрии См можно представить в виде суммы М так называемых нормальных волн, каждая из которых удовлетворяет граничнымусловиям в системе. Вектор напряженности электрического поля в q-й нормальной волне может быть записан в виде

Eq (r, φ, z) =Е0q(r, φ, z)ехр[-ίqφ],(4.1.1)

где q- целое число, характеризующее тип волны,

-М/2<q≤Μ/2; Е0q — периодическая функция координаты φ цилиндрической системы координат, ось z которой совпадает с осью симметрии См. Период функцииравен 2π/M и ее можно разложить в ряд Фурье:

Еоq(r,φ,z)=emq(r,z)exp[-imMφ] (4.1.2)

е— коэффициент разложения. Из (4.1.1) и (4.1.2) cледует выражение для поля q-й нормальной волны:

Eq(r,φ,z)=emq(r,z)exp[-ίνφ], (4.1.3)

где ν=qmΜ. (4.1.4)

Выражение (1.3) представляет собой разложение поля этой нормальной волны на так называемые азимутальные пространственные гармоники.

Аналогичноможно представить токи в системе, соответствующие q-йнормальной волне:

jq(r,φ,z)=jmq(r,z) exp[-ίνφ]. (4.1.5)

Из (1.3) — (1.5) следует, что в q-ю нормальнуюволнyвходят азимутальныепространственные гармоники с индексамиν=q+mM .

Поля итоки в соседних симметричных точках (в точках, совмещающихся приповороте системы вокруг оси| z на угол 2π/М) связаны соотношениями:

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы