Статистический анализ и прогнозирование
| Критерий min и max пиков и ям | |||||||||||
| As = 0,58545591 4 | δAs=0,553066319 | ||||||||||
| Es = -0,575714598 | δEs=0,901388454 | ||||||||||
| As < 1,5 δAs = 0,829599478 | |||||||||||
| Es-(6/(n+1))= -0,975714598 < 1,5 δEs=1,352082681 | |||||||||||
| Уровни ряда являются нормально рапределенными | |||||||||||
| As ≥ 2 δAs, Es-(6(/n+1)) ≥ δEs | |||||||||||
| Данные являются нормальными, возможен анализ | |||||||||||
| 1,802776908 | |||||||||||
3.6 Выбор уравнения тренда
Для отображения основной тенденции развития явлений во времени применяются полиномы разной степени, экспоненты, логистические кривые и другие функции. В статистической практике параметры полиномов невысокой степени иногда имеют конкретную интерпретацию характеристик динамического ряда. Так, параметр  трактуется как характеристика средних условий ряда динамики, параметры
трактуется как характеристика средних условий ряда динамики, параметры  ,
,  ,
,  - изменения ускорения. В статистике выработано правило выбора степени полинома модели развития, основанное на определении величин конечных разностей уровней динамических рядов. Согласно этому правилу полином первой степени (прямая) применяется как модель такого ряда динамики, у которого первые разности (абсолютные приросты) постоянны; полиномы 2-й степени – для отражения ряда динамики с постоянными вторыми разностями (ускорениями); полиномы 3-й степени – с постоянными третьими разностями и т.д. Для полиномиальных моделей характерно отсутствие прямой связи между абсолютными приростами и приростами уровней рядов динамики.
- изменения ускорения. В статистике выработано правило выбора степени полинома модели развития, основанное на определении величин конечных разностей уровней динамических рядов. Согласно этому правилу полином первой степени (прямая) применяется как модель такого ряда динамики, у которого первые разности (абсолютные приросты) постоянны; полиномы 2-й степени – для отражения ряда динамики с постоянными вторыми разностями (ускорениями); полиномы 3-й степени – с постоянными третьими разностями и т.д. Для полиномиальных моделей характерно отсутствие прямой связи между абсолютными приростами и приростами уровней рядов динамики. 
Линейная функция. Параметры линейного тренда можно интерпретировать так: а – начальный уровень временного ряда в момент времени t = 0; b – средний за период абсолютный прирост уровней ряда. Применительно к данному временному ряду можно сказать, что средний за год абсолютный прирост равен 4600,56 рублей.
У=-15095,5+4600,56t
R^2=0,84
 
 
 
 
 
 
 
 
 
 
Параметры экспоненциального тренда имеют следующую интерпретацию. Параметр а – это начальный уровень временного ряда в момент времени t = 0. Величина  – это средний за единицу времени коэффициент роста уровней ряда. Средний за год цепной темп прироста временного ряда составил 73,2%.
– это средний за единицу времени коэффициент роста уровней ряда. Средний за год цепной темп прироста временного ряда составил 73,2%. 
 
 
3.7 Экспоненциальное сглаживание
В настоящее время для учета степени «устаревания» данных во взвешенных скользящих средних используются веса, подчиняющиеся экспоненциальному закону, т.е. применяется метод экспоненциальных средних. Смысл экспоненциальных средних состоит в том, чтобы найти такие средние, в которых влияние прошлых наблюдений затухает по мере удаления от момента, для которого определяются средние. Веса в экспоненциальных средних устанавливаются в виде коэффициентов α (ΙαΙ < 1). Веса по времени убывают экспоненциально, а сумма весов стремится к 1. В качестве весов используется ряд:
 ;
;  ;
;  ;
;  и т.д.
и т.д. 
Экспоненциальная средняя определяется по формуле Р. Брауна:
 ,
, 
где  – экспоненциальная средняя (сглаженное значение уровня ряда) на момент t; α – вес текущего наблюдения при расчете экспоненциальной средней;
– экспоненциальная средняя (сглаженное значение уровня ряда) на момент t; α – вес текущего наблюдения при расчете экспоненциальной средней;  –фактический уровень динамического ряда в момент времени t;
–фактический уровень динамического ряда в момент времени t;  –экспоненциальная средняя предыдущего периода.
–экспоненциальная средняя предыдущего периода. 
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели

 Скачать реферат
 Скачать реферат