Зарождение и создание теории действительного числа

Пусть — диагональ квадрата, а — его сторона. Тогда их отношение равно отношению целых чисел. Выберем такие числа, чтобы они были взаимопростыми.

Возведем эту дробь в квадрат t=44 src="images/referats/11811/image011.png">. По теореме Пифагора , следовательно

(1)

Отсюда следует, что - четное число. Из свойств четных и нечетных чисел следует, что и четное, следовательно . Подставляя в (1), имеем

Из чего следует что, четное число, а значит и n четное, что невозможно т.к. m и n взамопростые.

Это замечательный пример того, что математики называют красивым доказательством, некоторые исследователи полагают, что это было первое в истории доказательство «от противного»[1, стр.235]. Возможно, доказательству этой теоремы предшествовали попытки найти практически общую меру этих двух величин[7, стр. 92].

Это открытие потрясло греков. « .проблема несоизмеримости получила громкую известность среди широких кругов образованных людей»[10, стр. 73]. Есть легенда о том, что Пифагор в благодарность богам принес в жертву сто быков[7, стр. 91]. Возможно было даже мнение что этот результат должен остаться тайным[1, стр.235].

Несоизмеримость не имела геометрического осмысления. Это явление назвали «алогон», не поддающееся осмыслению. Термин «иррациональность» является латинским переводом этого слова[7, стр.91]. В истории математики крушение пифагорейской арифметики называют Первым кризисом математики.

Вслед за открытием иррациональности последовало открытие иррациональности чисел , сделанное Теодором(Феодором) из Кирены. Ученик Теодора Теэтет(начало IV в. до н.э.) доказал несколько теорем и критериев несоизмеримости, в частности он предложил метод для доказательства иррациональностей вида . Теэтет классифицировал иррациональности, также он считается творцом общей теории делимости.

2.1 Следствия первого кризиса и попытки его преодоления

Открытие несоизмеримости оказало огромное влияние на греческую мысль. «Именно с открытием несоизмеримых величин в греческую математику проникло понятие бесконечности»[1, стр. 235]. Дело в том, что до открытия несоизмеримости греки находили общую меру при помощи алгоритма Евклида. Но случае несоизмеримых отрезков алгоритм переставал быть конечным. Этот факт побудил греков к рассмотрению бесконечности. Однако понятие бесконечности давалось грекам с трудом и глубоко смущало их. Трудности связанные с понятием бесконечного привели к еще большему кризису в математике и нашли отражение в знаменитых апориях Зенона Элейского. Эти апории(парадоксы) вскрывали противоречия между теми кто считал что материя и время бесконечно делимыи теми, кто считал что существуют первичные неделимые единицы. Приведем самые интересные для затронутой темы парадоксы по [10].

1. Парадокс «Дихотомия» построенный в предположении, что пространство делимо до бесконечности.

Движущееся тело никогда не достигнет конца пути, потому что сначала оно должно дойти до середины отрезка, потом до середины остатка отрезка, потом до четверти отрезка и так далее. Таким образом тело должно пройти бесконечный набор точек.

2. Парадокс «Стрела», построенный в предположении, что время пространство и время состоят из неделимых элементов.

Стрела в некоторый момент времени находится в точке в неподвижном состоянии. Так как это верно в каждый момент времени, то стрела покоится.

Несмотря на то что, в этих парадоксах отражено незнание греками понятия предела, эти парадоксы не так просты. Вопросы, поставленные Зеноном, обсуждались философами и математиками во все времена. В частности такими математикам как Гильберт и Вейль. Но для греческих математиков вопрос был в том, допустимо или не допустимо использовать бесконечность в математике. Этот вопрос в греческой математике стоял очень остро. Например, Протагор(V в. до н.э) отрицал даже все математические абстракции[10, стр. 94].

Первая концепция бесконечного, которая стала общепринятой в греческой математике, была выдвинута Анаксагором(V в. до н.э.) и развита Евдоксом Книдским. Евдоксу принадлежит метод исчерпывания, который был призван разрешить проблему несоизмеримых. Для этого он строит теорию величин аксиоматически. Величины в понимании Евдокса имеют различную природу - отрезки, числа, время, но все величины характеризуются[1]:

1. Транзитивностью. «Равные одному и тому же равны между собой».

2. «Если к равным прибавляются равные, то и остатки будут равны».

3. «Если от равных отнимаются равные, то и остатки будут равны».

4. Эквивалентностью. « .совмещающиеся друг с другом равны между собой».

5. Все величины одного вида упорядочены, т.е.

.

6. « .целое больше части».

7. «величины имеют отношение друг с другом, если они взятые кратно могут превзойти друг друга» (или в современной трактовке: если , то найдется такое что ).Эту аксиому Евдокс вводит, чтобы исключить бесконечно большие величины. Она известна в математике под названием аксиомы Архимеда, однако Архимед не только не был ее автором, но даже подчеркивал, что это аксиома была известна до него[2, стр. 148].

Построение этой аксиоматики было значительным шагом в сторону теории действительного числа.

На множестве величин Евдокс определил операцию отношения. Два отношения и считались равными если для любых целых чисел выполнялось одно из следующих условий:

1. и

2. и

3. и .

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы