Воздействие радиационного излучения на операционные усилители

Уменьшение размеров структур в условиях радиационного воздействия также приводит к принципиальным изменениям физики работы приборов. Эти изменения связаны с тем, что: 1) характерные пространственные масштабы изменения электрического поля сопоставимы с длинами релаксации энергии и импульса электронов и длиной свободного пробега электронов; 2) характерные размеры рабочих областей приборов сравним

ы с расстоянием между кластерами радиационных дефектов (КРД); 3) характерные размеры рабочих областей приборов сопоставимы с размерами КРД; 4) ионизирующее излучение разогревает электронный газ, который не успевает остывать за времена пролета рабочей области приборов; 5) при облучении нейтронами происходит перестройка протонированных изолирующих областей ИС, что сказывается на процессах протекания тока и фоточувствительности; 6) взаимодействие ионизирующих излучений (особенно лазерных) с нанометровыми металлическими объектами имеет особенности; 7) радиационные технологические процессы (например, геттерирование) существенно изменяют электрофизические характеристики полупроводника, что заметным образом сказывается на процессах формирования радиационных дефектов в субмикронных приборах; 8) электроны, разогнанные до энергий 0,5 .1 эВ большими электрическими полями (~ 100 кВ/см) в субмикронных приборах, могут проникать сквозь КРД, что принципиально меняет подход к моделированию радиационной стойкости приборов.

Радиационные эффекты в усилительных и дифференциальных каскадах.

Усилительные каскады.

В качестве простейших усилитель­ных каскадов применяют каскады с общим эмиттером (ОЭ) и общим истоком (ОИ). Отклонение тока коллектора ΔIк от своей номинальной величины, обусловленное действие стационарных эффектов смещения и ионизации, можно уменьшить увеличением глубины обратной связи, что приводит к уменьшению как коэф­фициента нестабильности, так и чувствительности схемы.

Усилительные параметры каскада ОЭ: его коэффициент уси­ления по напряжению входное и выходное сопротивление изме­няются главным образом из-за уменьшения коэффициента пере­дачи тока базы bN. Высокочастотные параметры каскада ОЭ при облучении улучшаются из-за уменьшения b, tb и Ск.

В каскаде ОИ отклонение тока стока ΔIк от своей номиналь­ной величины, вызываемое радиационными эффектами, опреде­ляется изменением смещения на затворе, сдвигом напряжения отсечки и изменением статической крутизны характеристики.

Усилительные характеристики каскада ОИ изменяются из-за изменений крутизны характеристики транзистора S, его входного и выходного сопротивлений. Постоянные времени

tвх » СвхRг ; tвsх » Сн.выхRсн

характеризующие высокочастотные свойства каскада ОИ, могут изменяться, если наблюдается заметное изменение паразитных емкостей Свх и Сн.вых которые складываются из межэлектродных емкостей транзистора, емкостей монтажных площадок и емкости нагрузки.

Дифференциальные каскады.

Принято считать, что стойкость аналоговых интегральных микросхем к спецвоздействиям оп­ределяется, прежде всего, радиационными эф­фектами во входных каскадах, в качестве кото­рых, как правило, применяют дифференциаль­ные каскады (за исключением трансимпедансных ИОУ). В дифференциальном каскаде приведенное ко входу откло­нение выходного напряжения от своей номинальной величины, вызываемое действием эффектов смещения и ионизации, опреде­ляется формулой

(где Kвл.ип коэффициент влияния нестабиль­ности напряжений источников питания, обусловленных радиаци­онными эффектами)

Представленное соотношение применимо для диффе­ренциальных каскадов, включенных в аналоговые ИМС с изоля­цией диэлектрической пленкой. В ИМС с изоляцией р-п-переходом в ряде случаев требуется учет паразитного р-п-р-транзистора, образуемого базовым и коллекторным слоями рабо­чего транзистора и подложкой ИМС.

Благодаря высокому коэффициенту по­давления синфазных сигналов, образуемых пере­падами ионизационных токов как на входах, так и на выходах, разность выходных напряжений и входной ток сдвига из­меняются незначительно. Поэтому отклонение выходного напряжения от нуля определяется не входным дифференциальным каскадом, а реакцией последующих каскадов.

Существенно меняется входной ток смещения; это ток, который определяется не разностью токов, а их средним значени­ем, изменение которого определяется изменением bN. Отклонение выходного напряжения происходит также из-за радиацион­ной нестабильности тока в эмиттерах.

В аналоговых ИМС с дифференциальным каскадом на входе в качестве пары используют униполярные транзисторы с управ­ляющим p-n-переходом. При этом токи затворов определяются токами обратносмещенных p-n-переходов — затворов. Как из­вестно, МДП-транзисторы обладают меньшим входным током, чем транзисторы с управляющим p-n-переходом. Однако МДП-транзисторы очень чувствительны к импульсным помехам, по­этому при использовании их во входных каскадах требуется за­щита входов диодами, токи утечки которых сводят на нет пре­имущества МДП-транзисторов. Необходимость диодной защиты отпадает в ИМС с внутрисхемной связью входа аналоговой части схемы с предшествующими схемами. При этом использование МДП-транзисторов в качестве дифференциальной пары позволя­ет заметно уменьшить Iвхсм и Iвх.сд определяемые токами утечки диэлектрических затворов.

Действие переходных ионизационных эффек­тов можно оценить при помощи моделей диффе­ренциальных каскадов на биполярных транзис­торах (рис. 1а) и униполярных транзисторах с уп­равляющим p-n-переходом (рис. 16).

Рис. 1. Модели дифференциальных каскадов для анализа переходных ионизационных эффектов: (а) - на биполярных транзисторах; (б) - на униполярных транзисторах с управляющим p-n-переходом.

В этих схемах фототоки источников стабилизированного тока I0 непосредственно не учитываются, так как их дей­ствие подавляется (так же как действие всяких синфазных помех). Косвенное влияние этих фо­тотоков, приводящее к изменению тока I0 в эмит­терах или истоках транзисторных пар, удобно учитывать наряду с другими причинами измене­ния этого тока, представив, что при облучении

ток I0 изменяется в (1 + aф) раз (где aф - коэффи­циент изменения тока I0).

В модели на рис.1,а действие фототоков, об­разуемых потоком носителей через коллектор­ные переходы, которые генерируются в базах транзисторных пар Т1 и Т2, учитываются посред­ством источников тока Iфкп1 и Iфкп2 (влиянием фо­тотоков, образуемых потоком носителей через эмиттерные переходы Т1 и Т2, пренебрегаем). Фототоки, которые возникают в коллекторных слоях транзисторов Tl, T2 и прилегающих к ним областях подложки с изолирующими р-п-переходами, учитываются источниками токов, шунтиру­ющих коллекторные и эмиттерные переходы па­разитных транзисторов ТП1, ТП2 и источниками фототоков Iфип1, Iфип2. Для упрощения моделей аналогичные паразитные транзисторы, связан­ные диффузионными резисторами, не показаны.

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы