Дискретно-аналоговое представление
Содержание
Введение
1. Дискретно-аналоговое представление регулярными выборками
2. Физическая трактовка процессов интерполяции сигналов
3. Задачи идеальной интерполяции
4. Интерполяция алгебраическими полиномами
5. Определение частоты опроса
Заключение
Список литературы
Введение
В первой половине ХХ века при регистрации и обработке информа
ции использовались, в основном, измерительные приборы и устройства аналогового типа, работающие в реальном масштабе времени, при этом даже для величин, дискретных в силу своей природы, применялось преобразование дискретных сигналов в аналоговую форму. Положение изменилось с распространением микропроцессорной техники и ЭВМ. Цифровая регистрация и обработка информации оказалась более совершенной и точной, более универсальной, многофункциональной и гибкой. Мощь и простота цифровой обработки сигналов настолько преобладают над аналоговой, что преобразование аналоговых по природе сигналов в цифровую форму стало производственным стандартом.
Под дискретизацией сигналов понимают преобразование функций непрерывных переменных в функции дискретных переменных, по которым исходные непрерывные функции могут быть восстановлены с заданной точностью. Роль дискретных отсчетов выполняют, как правило, квантованные значения функций в дискретной шкале координат. Под квантованием понимают преобразование непрерывной по значениям величины в величину с дискретной шкалой значений из конечного множества разрешенных, которые называют уровнями квантования. Если уровни квантования нумерованы, то результатом преобразования является число, которое может быть выражено в любой числовой системе. Округление с определенной разрядностью мгновенных значений непрерывной аналоговой величины с равномерным шагом по аргументу является простейшим случаем дискретизации и квантования сигналов при их преобразовании в цифровые сигналы.
Как правило, для производственных задач обработки данных обычно требуется значительно меньше информации, чем ее поступает от измерительных датчиков в виде непрерывного аналогового сигнала. При статистических флюктуациях измеряемых величин и конечной погрешности средств измерений точность регистрируемой информация также всегда ограничена определенными значениями. При этом рациональное выполнение дискретизации и квантования исходных данных дает возможность снизить затраты на хранение и обработку информации.
Кроме того, использование цифровых сигналов позволяет применять методы кодирования информации с возможностью последующего обнаружения и исправления ошибок при обращении информации, а цифровая форма сигналов облегчает унификацию операций преобразования информации на всех этапах ее обращения.
1. Дискретно-аналоговое представление регулярными выборками
При дискретно-аналоговом представлении сообщение на интервале времени T описывается вектором
, (1)
где
- координаты.
Если шкала каждой координаты непрерывная, то это представление называется дискретно-аналоговым, а если шкала квантованная, то представление дискретно-квантованное, т.е. цифровое.
Дискретно-аналоговое представление сообщений может быть реализовано различными способами в зависимости от выбора системы координат. Наибольшее применение в РСПИ получили представления, у которых в качестве координат
сообщения используется текущее значение сигнала в фиксированные моменты времени.
(2)
Координаты
называются выборками или отсчетами, а моменты времени
- точками опроса.
При представлении регулярными выборками расстояние между соседними точками опроса одинаково и равно
.
, (3)
где
- период опроса,
- частота опроса.
Частота опроса
является важнейшим параметром, который надо выбирать при представлении сообщения регулярными выборками.
Процесс формирования выборок в этом случае изображен на рисунке 1:
Рисунок 1
Выбор частоты опроса
зависит от способа восстановления исходного сообщения на приемном конце. Восстановление непрерывной функции по её выборкам называется интерполяцией.
Рассмотрим случай, когда потребителю необходимо восстановить на приёмной стороне функцию
. Реально при восстановлении функции
может быть получена только её оценка
. Для доказательства этого утверждения представим интерполяционную обработку в следующем виде:
![]()
, (4)
где
- интерполирующая (восстанавливающая, синтезирующая) функция. Функция
, (5)
т.е.
есть функция с началом отсчета в точкемер выборки первичного сигнала. Суммирование в выражении (4) ведется по всем выборкам, участвующим в обработке. Определение вида функции
составляет сущность задачи выбора способа интерполяционной обработки.
На точность функции восстановления функции
влияют следующие факторы:
- шумы интерполяции;
- шумы радиолинии;
- погрешности системы.
В дальнейшем будем учитывать только ошибку за счет интерполяции. Т.е. выборки будут считаться точными, а шумы отсутствующими. Тогда выражение для оценки первичного сигнала будет иметь следующий вид:
. (6)
Ошибка интерполяционной обработки в этом случае равна:
. (7)
При этом оценка
должна быть получена на некотором интервале интерполяции
с учетом выборок, расположенных на конечном интервале обработки
. Интервал обработки
должен последовательно перемещаться в пределах интервала наблюдения
(рисунок 2).
Другие рефераты на тему «Программирование, компьютеры и кибернетика»:
Поиск рефератов
Последние рефераты раздела
- Основные этапы объектно-ориентированного проектирования
- Основные структуры языка Java
- Основные принципы разработки графического пользовательского интерфейса
- Основы дискретной математики
- Программное обеспечение системы принятия решений адаптивного робота
- Программное обеспечение
- Проблемы сохранности информации в процессе предпринимательской деятельности
