Бифокальный ЭКС (с предсердно-желудочковой последовательностью импульсов)

Прибор этого типа содержит два устройства типа - запрещающего ЭКС, управляемых импульсами электрической активности желудочков. Одно устройство стимулирует предсердия, другое - желудочки. Интервал запирания предсердного устройства короче интервала запирания желудочкового на физиологическую атриовентрикулярную задержку. Если спонтанный интервал KR длиннее, чем каждый из интервалов запирания, то

сначала стимулируются предсердия, а по истечении определенного времени задержки - желудочки. Если спонтанный интервал RR имеет промежуточную длину между двумя интервалами запирания прибора, то стимулируются лишь предсердия. Если спонтанный интервал RR короче, чем интервал запирания предсердного устройства, то ни одно из устройств не вырабатывает стимулирующих импульсов. Если «атриовентрикулярный интервал» прибора больше, чем действительная задержка атриовентрикулярного проведения у пациента, то не генерируется импульс стимуляции желудочков.

Орторитмический ЭКС

ЭКС берет на себя управление желудочковыми сокращениями, навязывает желудочкам свою частоту, а затем начинает постепенно снижать эту частоту, приближая ее к нормальной. Если эта последовательность действий завершается успешно, то ЭКС может перейти на R-запрещающий режим. Если же в процессе снижения частоты возникает собственное сокращение желудочков, предшествующее стимулированному, то ЭКС снова повышает частоту генерируемых импульсов, пока к нему опять не перейдет управление ритмом, и попытка снизить частоту повторяется. Управляемая таким способом стимуляция желудочков может подавить импульсы возбуждения, исходящие из эктопического очага в мышечной массе желудочков, и тем самым устранить желудочковую тахикардию. Серьезной проблемой, с которой встречаются пациенты с имплантированным электрокардиостимулятором, является влияние на работу стимулятора различного рода источников помех.

AAAAAAAAAAAAAAAAAAAAAAAAAAA

Нормальное функционирование стимуляторов может быть нарушено из-за помех, создаваемых рядом расположенными бытовыми приборами с коллекторными электродвигателями (электрическая бритва, кофемолка и др.), терморегуляторами (электрические одеяла, грелки и др.), устройствами с истопником высокого напряжения (системы зажигания автомобилей, генераторы развертки телевизоров и др.). Помехи могут создавать также высокочастотные генераторы, в частности физиотерапевтические аппараты, радарные установки. Чувствительность электрокардиостимулятора к внешним помехам в значительной степени зависит от его конструкции и схемы. Биоуправляемые стимуляторы отличаются значительно большей чувствительностью к внешним помехам, чем асинхронные. Это объясняется наличием у них усилителя, рассчитанного на сигналы порядка нескольких милливольт. Действие помехи на асинхронный стимулятор может привести к некоторому увеличению частоты следования импульсов. В случае же R-запрещающего стимулятора сигнал помехи может быть воспринят как собственная электрическая активность сердца, в результате чего прекратится подача импульсов, и пациент окажется без какой-либо внешней стимуляции.

В современных электрокардиостимуляторах принимаются различные меры по повышению их помехоустойчивости. Большое значение имеет экранировка электрической части стимулятора с помощью металлического корпуса. Широко используются фильтры, защищающие стимулятор от высокочастотных полей, применяются устройства, переводящие биоуправляемые стимуляторы при наличии интенсивной помехи на фиксированный ритм, и другие средства защиты.

Учитывая большие уровни полей, создаваемые высокочастотными физиотерапевтическими и хирургическими аппаратами, пациенты с электрокардиостимуляторами не должны находиться в физиотерапевтических кабинетах, а также не должны подвергаться электрохирургическим воздействиям.

Техническое исполнение имплантируемых ЭКС

Прибор, имплантированный в тело человека, работает в агрессивной среде (жидкости тела), имеет ограниченные энергетические ресурсы и должен обладать очень высокой надежностью с учетом того, что ремонт его невозможен. Таким образом, при конструировании электронных цепей имеется много ограничивающих требований наряду с требованием правильного функционирования прибора.

Главным требованием является минимальное количество потребляемой энергии. Ограниченность размеров ЭКС и требование высокой надежности также обусловливают необходимость минимизации числа составных частей прибора, поскольку он состоит из дискретных элементов. Однако при использовании гибридных или монокристаллических интегральных схем сложность электронных цепей не оказывает решающего влияния на размеры ЭКС. Электрокардиостимулятор состоит из нескольких функциональных блоков. Наиболее простой по конструкции асинхронный прибор состоит из генератора импульсов и выходной цепи. Управляемый ЭКС кроме генератора импульсов и выходной цепи содержит еще усилитель биопотенциалов и цепи управления. Обычная схема выходной цепи ЭКС показана на рис. 3.26. После отпирания транзистора VT заряженный конденсатор С разряжается через полное сопротивление ткани Z. В промежутке между импульсами конденсатор заряжается от источника E через сопротивление R. Полное сопротивление ткани Z содержит как активную, так и емкостную составляющую и имеет нелинейный характер. У электродов с площадью около 30 мм2 активная составляющая обычно находится в. пределах от 300 до 500 Ом, а у малоразмерных электродов (с площадью около 10 мм2) - в пределах от 500 до 600 Ом при использовании импульсов с амплитудой 6,5 В. При меньших амплитудах активная составляющая у малоразмерных электродов достигает 900 Ом при пороговых амплитудах около 1 В. Тканевое полное сопротивление можно приблизительно представить в виде различных RС-цепочек. Типичная эквивалентная схема, в которой нелинейные элементы заменены постоянными резисторами и конденсаторами показано на рис. 1. Переключающий транзистор может также работать в качестве элемента, ограничивающего выходной ток, если выбрать ток базы.

Рисунок 1 – Выходной каскад на основе разряда емкости

Рисунок 2 – Выходной каскад на основе заряда емкости

Рисунок 3 – Эквивалентная схема нагрузки ЭКС (R = 600 Ом; С = 25 мкФ)

Таким образом, чтобы при заданном выходном токе транзистор был вблизи состояния насыщения. При низком сопротивлении нагрузки выход ЭКС обладает свойствами источника постоянного тока. К выводам подсоединен стабилитрон VD (диод Зенера), который предохраняет ЭКС от повреждения при разряде дефибриллятора (см. рис. 2). Это ограничивает напряжение на выводах прибора в тех случаях, когда приходится подвергать дефибрилляции пациента с имплантированным ЭКС.

Схему можно модифицировать таким образом, чтобы в период генерации импульса конденсатор заряжался от источника, а в промежуточном интервале постепенно разряжался (рис. 3). При этом источник будет иметь импульсную нагрузку и будет сказываться слияние его внутреннего сопротивления, однако при повреждении выходного конденсатора (увеличении тока утечки) будет сохраняться функция стимуляции и возрастать лишь постоянная составляющая выходного сигнала.

Страница:  1  2  3 


Другие рефераты на тему «Медицина»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2020 - www.refsru.com - рефераты, курсовые и дипломные работы