Спектрометрическое сканирование атмосферы и поверхности Земли

Классичесими уже стали результаты картирования поверхности Венеры - планеты, покрытой мощным облачным слоем. Совершенствование РЛ-аппаратуры должно повлечь за собой дальнейшее повышение роли радиолокации в дистанционных исследованиях Земли, особенно при изучении ее геологического строения.

Тепловые съемки

Инфракрасная (ИК), или тепловая, съемка основана на выявлении тепловых аном

алий путем фиксации теплового излучения объектов Земли, обусловленного эндогенным теплом или солнечным излучением. 0на. широко применяется в геологии. Температурные неоднородности поверхности Земли возникают в результате неодинакового нагрева различных ее участков. Инфракрасный диапазон спектра электромагнитных колебаний условно делится на три части (в мкм):

· ближний (0,74-1,35),

· средний (1,35-3,50)

· дальний (3,50-1000).

Солнечное (внешнее) и эндогенное (внутреннее) тепло нагревает геологические объекты по-разному в зависимости от литологических свойств пород, тепловой инерции, влажности, альбедо и многих других причин. ИК-излучение, проходя через атмосферу, избирательно поглощается, в связи с чем тепловую съемку можно вести только в зоне расположения так называемых "окон прозрачности" - местах пропускания ИК-лучей. Опытным путем выделено четыре основных окна прозрачности (в мкм): 0,74-2,40; 3,40-4,20; 8,0-13,0; 30,0-80,0. Некоторые исследователи выделяют большее число окон прозрачности. в первом окне (до 0,84 мкм) используется отраженное солнечное излучение. Здесь можно применять специальные фотопленки и работать с красным фильтром. Съемка в этом диапазоне называется ИК-фотосъемкой.

В других окнах прозрачности работают измерительные приборы - тепловизоры, преобразующие невидимое ИК-излучение в видимое с помощью электроннолучевых трубок, фиксируя тепловые аномалии. На ИК-изображениях светлыми тонами фиксируются участки с низкими температурами, темными - с относительно более высокими. Яркость тона прямо пропорциональна интенсивности тепловой аномалии. ИК-съемку можно проводить в ночное время. На ИК-снимках, полученных с ИСЗ, четко вырисовывается береговая линия, гидрографическая сеть, ледовая обстановка, тепловые неоднородности водной среды, вулканическая деятельность и т. п. ИК-снимки используются для составления тепловых карт Земли. Линейно-полосовые тепловые аномалии, выявляемые при ИК-съемке, интерпретируются как зоны разломов, а площадные и концентрические - как тектонические или орографические структуры. Например, наложенные впадины Средней Азии, выполненные рыхлыми кайнозойскими отложениями, на ИК-снимках дешифрируются как площадные аномалии повышенной интенсивности. Особенно ценна информация, полученная в районах активной вулканической деятельности. В настоящее время накоплен опыт использования ИК-съемки для изучения дна шельфа. Этим методом по разнице температурных аномалий поверхности воды получены данные о строении рельефа дна. При этом использован принцип, согласно которому при одинаковом облучении поверхности воды на более глубоких участках водных масс энергии на нагревание расходуется больше, чем на более мелких. В результате температура поверхности воды над более глубокими участками будет ниже, чем над мелкими. Этот принцип позволяет на ИК-изображениях выделять положительные и отрицательные формы рельефа, подводные долины, банки, гряды и т. п. ИК-съемка в настоящее время применяется для решения специальных задач, особенно при экологических исследованиях, поисках подземных вод и в инженерной геологии.

Спектрометрическая съемка

Спектрометрическая (СМ) съемка проводится с целью измерения отражательной способности горных пород. Знание значений коэффициента спектральной яркости горных пород расширяет возможности реологического дешифрирования, придает ему большую достоверность. Горные породы имеют различную отражательную способность, поэтому отличаются величиной коэффициента спектральной яркости. СМ-съемка делится на три вида:

1. микроволновая (0,3 см-1,0 м), являющаяся универсальной, Лак. как исключает влияние атмосферы;

2. ИК или тепловая (0,30-1000 мкм), выявляющая температур-иые неоднородности по энергетической яркости изучаемых объектов;

3. спектрометрия видимого и близкого ИК-спектра излучения ;(0,30-1,40 мкм), фиксирующая спектральное распределение отражательного радиационного излучения.

Геологические объекты отражаются на КС с разной степенью контраста, зависящего от их спектральных особенностей. Работа по составлению банка данных о спектральных характеристиках горных пород чрезвычайно трудоемка. Для того чтобы ее выполнить, необходимо произвести спектрометрические измерения горных пород, а также иных ландшафтных объектов, на разных расстояниях, в различные времена года, на участках с различной степенью обнаженности. Эти данные, однако, являются совершенно необходимыми для систем автоматического поиска и распознавания объектов, в том числе и экологического содержания. В настоящее время увеличение пограничных контрастов достигается использованием многозональных снимков, полученных в относительно узких зонах спектра.

Лидарные съемки

Лидарная съемка является активной и основана на непрерывном получении отклика от отражающей поверхности, подсвечиваемой лазерным монохроматическим излучением с фиксированной длиной волны. Частота излучателя настраивается на резонансные частоты поглощения сканируемого компонента (например приповерхностного метана), так что в случае его заметных концентраций соотношение откликов в точках концентрирования и в вне их будут резко повышенными. Фактически - лидарная спектрометрия это геохимическая съемка приповерхностных слоев атмосферы, ориентированная на обнаружение микроэлементов или их соединений, концентрирующихся над современно активными геоэкологическими объектами. Устройства лидарной съемки оборудуются на низковысотных носителях. [1-9]

Газовый состав атмосферы

Предпринятые ранее измерения общего содержания водяного пара в марсианской атмосфере обнаружили, что водяной пар появляется в середине лета соответствующего полушария и его содержание становится максимальным примерно через два месяца, достигая 50 мкм при характерных горизонтальных масштабах порядка 103 км (наибольшее влагосодержание атмосферы наблюдается в умеренных широтах). Рассматриваемые наблюдения охватывают южное (сухое) полушарие и северные широты до 20° при наличии нескольких изолированных серий измерений в полосе 40—50° с. ш. Прибор, предназначенный для определения общего влагосодержания (датчик водяного пара на Марсе — ДВПМ), представляет собой спектрометр с дифракционной решеткой, функционирующей в 7200 см-1 (1,4 мкм) полосе поглощения водяного пара при спектральном разрешении 1,2 см-1, что позволяет обеспечить измерения влагосодержаний меньше 1 мкм атм. ДВПМ обычно работает как пятиканальный радиометр, три канала которого расположены вблизи центра полосы (7223, 13; 7232, 20; 7242,74 см-1), а два — в окнах прозрачности. Приемниками излучения для всех каналов служат радиационно охлаждаемые сернисто-свинцовые фотосопротивления. Иногда осуществлялось сканирование по частоте с целью измерений спектрального распределения излучения в диапазоне 7215—7251 см-1. Поле зрения ДВПМ составляет 2x16 мрад, что соответствует «пятну» на местности 3X24 км при высоте периапсиса 1500 км. За счет ступенчатого сканирования на 15 шагов вдоль короткой стороны поля зрения достигается охват площади около 20X45 км (в периапсисе) за период сканирования 4,48 с.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Астрономия, авиация и космонавтика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы