Частотные критерии устойчивости

В частности, если разомкнутая система устойчива (и, следовательно, l = 0), то, для того чтобы замкнутая система была устойчива, необходимо и достаточно, чтобы амплитудно-фазовая частотная характеристика ее разомкнутой системы не охватывала точку (—1, j0).

Пример. Дана замкнутая система (рис. 2, а). Оценить устойчивость системы по критерию Найквиста.

Для этого необходимо получить частотн

ую передаточную функцию разомкнутой системы и построить АФЧХ.

;

Частотная передаточная функция ее разомкнутой системы

W (jw) = U(w) + jV (w),

U(w) = –2/(w2 + 1),

V (w) = –2w /(w2 + 1).

Для построения АФЧХ составим таблицу:

w

0

w >0

®¥

U(w)

V(w)

–2

0

< 0

<0  

® 0

® 0  

Амплитудно-фазовая частотная характеристика разомкнутой системы (рис. 3, б) охватывает точку (–1, j0) в положительном направлении 1/2раз. Необходимо составить характеристическое уравнение разомкнутой системы:

Характеристическое уравнение разомкнутой системы имеет один правый корень, т.е. l= 1. Поэтому замкнутая система по Критерию Найквиста устойчива, поскольку АФЧХ разомкнутой системы охватывает точку (-1;j0) ½ раза в положительном направлении. Алгебраические критерии и критерий Михайлова применяются для исследования устойчивости и разомкнутой и замкнутой систем.

Рис. 3. Структурная схема и амплитудно-фазовая частотная характеристика

Если характеристическое уравнение разомкнутой системы имеет u(u³ 1) нулевых корней или, что-то же, передаточная функция разомкнутой системы имеет вид

W (s) =kW0(s)/su,

где W0 (0) = 1, то система называется астатической с астатизмом u-го порядка.

Как следует из критерия Найквиста, на устойчивость замкнутой системы влияет не конкретный вид амплитудно-фазовой частотной характеристики ее разомкнутой системы, а только то, сколько раз она охватывает точку (–1, j0). Это можно установить по числу переходов (пересечений) амплитудно-фазовой частотной характеристики отрезка (–¥, –1) действительной оси [левее точки (-1;j0)].

Дадим определения:

Положительный переход (при возрастании частоты) – переход АФЧХ отрезка (–¥, –1) сверху вниз.

Отрицательный переход — это переход АФЧХ отрезка (–¥, –1) снизу вверх (рис. 4, а).

То, сколько раз АФЧХ охватывает точку (–1, j0) в положительном направлении, равно разности между числами положительных и отрицательных переходов на отрезке (-¥, -1).

Поэтому критерий Найквиста можно сформулировать также следующим образом: для того чтобы замкнутая система была устойчива, необходимо и достаточно, чтобы разность между числами положительных и отрицательных переходов амплитудно-фазовой частотной характеристики разомкнутой системы отрезка (-¥, -1) была равна l/2 (l — число правых корней характеристического уравнения разомкнутой системы).

Используя связь между амплитудно-фазовой частотной характеристикой и логарифмическими частотными характеристиками, на основе критерия Найквиста нетрудно сформулировать логарифмический частотный критерий устойчивости.

При пересечении амплитудно-фазовой частотной характеристики отрезка (-¥, -1) А(w ) > 1 или L(w ) = 20 lq А (w ) > 0 амплитудно-фазовой частотной и

j (w ) = – (2i + 1)p, i = 0, 1, . .

Рис. 4 Схема для формулировки логарифмического частотного критерия

Логарифмический частотный критерий: Для того чтобы замкнутая система была устойчива, необходимо и достаточно, чтобы разность между числами положительных и отрицательных переходов логарифмической фазовой частотной характеристики разомкнутой системы прямых j (w ) = – (2i + 1)p, ( i = 0, 1, .) при частотах, при которых L(w ) > 0 (логарифмическая амплитудная частотная характеристика положительна), была равна l/2 (l — число правых корней характеристического уравнения разомкнутой системы).

Положительный переход ЛФЧХ – это пересечение ЛФЧХ прямой j = – (2i + 1)p снизу вверх, отрицательный — сверху вниз (рис. 4, б, в).

Устойчивость систем с запаздыванием. Если система содержит звено чистого запаздывания, включенного последовательно с ее остальной частью, то передаточная функция разомкнутой системы имеет вид

W(s) = W0 (s)est =P (s)e-st/ Q(s).

Наличие запаздывающего звена не влияет на характеристическое уравнение Q(l) = 0 и соответственно на устойчивость разомкнутой системы. Характеристическое уравнение замкнутой системы Q(l) + P(l)e-lt = 0 становится трансцендентным и к нему непосредственно нельзя применить алгебраические критерии и критерий Михайлова. Критерий Найквиста (включая логарифмический частотный критерий) остается справедливым без изменений для систем с запаздыванием.

Частотная передаточная функция системы с чистым запаздыванием

W(jw) =/W0 (jw)/e j[j(w)-wt] отличается от частотной передаточной функции системы без чистого запаздывания W(jw) = W0 (jw)/e-jj(w) только дополнительным сдвигом фазы q(w) =-wt. Запаздывание может сделать устойчивую без запаздывающего звена систему неустойчивой.

Сравнительная характеристика алгебраических и частотных критериев устойчивости.Построение частотных характеристик является более трудоемким, чем вычисление определителей, необходимых для установления устойчивости. Поэтому если параметры системы фиксированы и нужно проверить только ее устойчивость, то, когда это возможно, лучше пользоваться алгебраическими критериями. Если система задается только частотными характеристиками, снятыми экспериментально, или она содержит звено чистого запаздывания, то следует воспользоваться частотными критериями, так как в этом случае алгебраические критерии непригодны.

Как показано в гл. 6, частотные характеристики позволяют судить и о качестве системы. И поэтому если кроме проверки устойчивости нужно оценить качество системы, то и в этом случае целесообразно использовать частотные критерии.

2. Методы выделения области устойчивости

Критерии устойчивости позволяют характеризовать устойчивость системы, если все ее параметры фиксированы. Но часто приходится решать задачу, когда часть параметров системы не фиксирована и их (варьируемые параметры) нужно выбрать так, чтобы система была устойчива и выполнялись какие-либо дополнительные требования к ней. В этих случаях возникает необходимость определения множества всех тех значений варьируемых параметров, при которых система устойчива. Это множество называют областью устойчивости в пространстве параметров, т. е. во множестве различных значений варьируемых параметров.

Страница:  1  2  3 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы