Судовые паровые турбины и их эксплуатация

Реактивные турбины большой мощности с целью уменьшения длины лопаток их последних ступеней часто делают двухпоточными. В этом случае турбина будет уравновешенной в осевом направлении и необходимость в думмисе отпадает.

На рис. 5, а показана турбина с расходящимся, а на рис. 5, б — со встречным течением пара.

Из-за разности давлений на лопатках в турбине реактивного типа наблюдается прот

ечка пара через радиальные зазоры у концов направляющих рабочих лопаток. В чисто активной турбине протечки возможны только через зазоры диафрагмы, так как здесь давление пара по обе стороны рабочих лопаток одинаково. Для уменьшения протечек пара у реактивной турбины зазоры между рабочими лопатками и корпусом, а также между направляющими лопатками и ротором делают как можно меньше.

По сравнению с активными паровые реактивные турбины менее выгодны в случае применения пара высокого давления. Поскольку такой пар имеет малый удельный объем, это приводит к необходимости применять

Рис. 4. Многоступенчатая реактивная турбина

лопатки незначительной высоты, но с относительно большими радиальными зазорами, а это ведет к большим потерям от протечки пара через зазоры.

В случае же применения пара низкого давления в реактивной турбине относительные значения радиальных зазоров получаются небольшими. При этом и потери на протечки незначительны, и к. п. д. немного выше, чем у активной турбины.

Таким образом, при умеренных параметрах пара активная и реактивная турбины мало отличаются одна от другой по экономичности (а также по массе и размерам). Однако реактивную турбину, имеющую массивный барабанный ротор, требуется длительно прогревать перед пуском, и ей необходимо продолжительное время на смену режима при маневрировании.

При активном облопачивании уменьшается число ступеней и допускаются более высокие окружные скорости. Турбина с дисковым ротором небольшой длины более приспособлена к работе при высоких параметрах, чем реактивная. Ротор активной турбины сравнительно быстро прогревается при соприкосновении с паром, имея в процессе прогревания примерно одинаковую с корпусом турбины температуру; при этом уменьшаются деформации деталей турбины и сохраняются почти постоянными радиальные и осевые зазоры в проточной части. Поэтому в настоящее время отечественные турбостроительные заводы и зарубежные фирмы строят активные паровые судовые турбины.

Рис. 5. Двухпроточные реактивные турбины

Сопловой аппарат предназначен для превращения потенциальной энергии пара в кинетическую и для направления парового потока на рабочие лопатки. Он состоит из спрофилированных сопловых (направляющих) лопаток, которые могут располагаться по всей окружности диска или в части ее. В первом случае обеспечивается полный впуск пара (на все рабочие лопатки), во втором — парциальный впуск пара (на определенную часть рабочих лопаток).

Сопловые лопатки первой ступени турбины крепятся непосредственно в корпусе или в сопловой коробке, а промежуточных ступеней — в диафрагмах.

Впуск свежего пара в ТВД обеспечивается сопловым аппаратом (рис. 2). В носовой части корпуса ТВД вварены сопловые коробки 2 и 5, в которых расположены четыре группы сопл, обеспечивающих парциальный впуск пара. Каждая группа сопл образует сопловой сегмент, который вваривается в сопловую коробку.

В верхней сопловой коробке размещены три регулируемые группы сопл 3, каждая из которых имеет свой сопловой клапан / и поэтому называется регулируемой группой. В нижней коробке закреплена нерегулируемая группа сопл 4, не имеющая соплового клапана.

Пар поступает на турбину по двум паропроводам: к нерегулируемой группе сопл через патрубок 5 и на сопловую коробку к регулируемым группам сопл, которые могут вводиться в работу не одновременно, а по мере необходимости. Благодаря такой конструкции соплового аппарата различной комбинацией полностью открытых сопловых клапанов можно получать промежуточные мощности турбины, требующиеся для заданного хода судна.

Сопловой аппарат ТНД состоит из сопл, набранных в расточке кормовой части корпуса и застопоренных винтами. Сопловой аппарат ТЗХ представляет собой диск с просверленными в нем сопловыми каналами. Диск состоит из двух половин и крепится в пазах корпуса ТЗХ болтами.

Рис. 2. Сопловой аппарат ТВД

Сопловая коробка. Сопла первых ступеней переднего и заднего хода современных турбин обычно устанавливают и закрепляют (болтами или шпильками) во вставных сопловых коробках, которые отливают из обыкновенной углеродистой стали, если турбина будет работать на паре нормальных параметров, и из хромоникелевой или молибденовой стали, если ей предстоит работать на паре высоких параметров. Толщина стенок коробки обычно равна 20—25 мм.

Рис. 3. Сопловая коробка ТВД судов типа «Ленинский комсомол», «Прага» (отдельно отлита и приварена): а — поперечное сечение; б — продольное сечение

Конструкции сопловых коробок весьма разнообразны. Крепление коробок в корпусе можно осуществлять различно. У турбин ЛОКЗа судов типа «Ленинский комсомол», «София» сопловые коробки вварены в верхнюю и нижнюю части корпуса.

Верхняя сопловая коробка (рис. 3) имеет три группы сопл со своими сопловыми клапанами. Пропускная способность сопл составляет 10, 20 и 30% расхода пара при нормальной мощности. Нижняя сопловая коробка имеет одну группу сопл с пропускной способностью 50% расхода пара.

Действительный процесс расширения пара в соплах. Потери в соплах. Пар, расширяясь в соплах, преодолевает ряд сопротивлений, на что затрачивается часть, кинетической энергии, приобретенной им. (Потери в соплах будут рассмотрены совместно с потерями на рабочих лопатках.) Поэтому действительная скорость с1 выхода пара из сопла меньше теоретической с1t Это уменьшение скорости можно учесть с помощью скоростного коэффициента сопла ф, который представляет собой отношение действительной скорости за соплом к теоретической ( = с1/c1t):

с1 = c1t,

Кинетическая энергия пара, затраченная на преодоление вредных сопротивлений, преобразуется в тепловую, вследствие чего энтальпия пара массой 1 кг в выходном сечении сопла при том же давлении будп немного больше той, которую он имел бы при изоэнтропийном расширении (i1 > ilt). Повышение энтальпии (i1 — ilt) эквивалентно потере кинетической энергии в соплах, выраженной в тепловых единицах, и носит название потери qc в соплах.

Если значение скоростного коэффициента  для данного сопла известно, то легко найти потерю в соплах:

qс = c21t /2 - c21/2 = c21t -  c21t) /2 = (1 - c21t/2)

где c21t/2— кинетическая энергия при адиабатном процессе расширения;

c21/2— кинетическая энергия при действительном процессе расширения

Страница:  1  2  3 


Другие рефераты на тему «Транспорт»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы