Проблемы захоронения радиоактивных отходов в геологических формациях

Наиболее благоприятными для могильников являются породы, в которых реакции минералообразования сопровождаются закупоркой трещин и пор Термодинамические расчеты и природные наблюдения показывают, что чем выше основность пород, тем в большей мере они соответствуют указанным требованиям . Так, гидратация дунитов сопровождается приращением объема новообразованных фаз на 47%, габбро— 16, диорита—8,

гранодиорита— 1%, а гидратация гранитов вообще не приводит к самозалечиванию трещин. В пределах значений температур, соответствующих условиям могильника, реакции гидратации будут протекать с образованием таких минералов, как хлорит, серпентин, тальк, гидрослюды, монтмориллонит, разнообразные смешанослойные фазы. Характеризуясь высокими сорбционными свойствами, эти минералы будут препятствовать распространению радионуклидов за пределы могильника.

Таким образом, изоляционные свойства пород повышенной основности под воздействием ВАО будут возрастать, что позволяет рассматривать эти породы как предпочтительные для строительства могильника . К ним можно отнести перидотиты, габбро, базальты, кристаллические сланцы повышенной основности, амфиболиты и др.

Некоторые физико-химические свойства горных пород и минералов, важные для захоронения РАО.

Изучение радиационной и термическая устойчивости горных пород и минералов показало, что взаимодействие излучения с горной породой сопровождается ослаблением потока излучения и появлением радиационных дефектов в структуре, приводящее к накоплению энергии в облученном материале, локальному повышению температуры. Эти процессы могут изменить первоначальные свойства вмещающих отходы пород, обуславливать фазовые переходы, приводить к газообразованию и влиять на целостность стенок хранилища.

Для кислых алюмосиликатных пород, содержащих кварц и полевые шпаты в пределах поглощенных доз 106—108 Гр минералы не меняют своей структуры. Для аморфизации поверхности алюмосиликатов и ее оплавления требуются радиационные нагрузки: дозы до 1012 Гр и одновременное термическое воздействие 673 К. При этом происходит частичная потеря плотности материалов и разупорядочение в расположении алюминия в кремнекислородных тетраэдрах . При облучении глинистых минералов на их поверхности появляется сорбированная вода. Поэтому для глинистых пород большое значение при облучении имеет радиолиз воды как на внешней поверхности, так и в межслоевых промежутках.

Однако, радиационные эффекты при захоронении даже высокоактивных отходов имеют, по-видимому, не столь большое значение, так как даже γ -излучение в основном поглощается в матрице РАО, и лишь небольшая его доля проникает в окружающую породу на расстояние около метра. Влияние излучения ослабляется и тем, что в этих же пределах имеет место наибольшее термическое воздействие, вызывающее «отжиг» радиационных дефектов.

При использовании алюмосиликатных пород для размещения хранилища отходов положительно проявляются их сорбционные свойства, возрастающие под действием ионизирующего излучения.

В Европе и Канаде при планировании хранилищ предусмотрена предельная температура в 100° С и даже ниже, в США этот показатель равен 250° С. Некоторые авторы полагают, что нецелесообразно допускать подъем температу­ры хранилища выше 3030К, поскольку удаление сорбированнои поды может привести к нарушению целостности пород, появлению трещин и т.д. Однако другие считают, что для исключения поверхностного накопления пленок воды наиболее рациональной в хранилище следует считать температуру не ниже 313—3230К. так как при этом будет оптимальным радиационное газообразование с выделени­ем водорода.

Поскольку, в любой геологической породе присутствует сорбированная вода, именно она выступает в качестве первого выщелачивающего агента. Любая глинистая порода содержит значительное количество воды (до 12 %), которая в условиях повышенных температур, характерных для могильников радиоактивных отходов, будет выделяться в отдельную фазу и выступать в качестве первого выщелачивающего агента. Таким образом, создание глинистых барьеров в могильниках повлечет за собой процессы выщелачивания при любом варианте эксплуатации, включая условно сухой.[1]

3.1.2 Выбор места захоронения радиоактивных отходов.

Выбор места (площадки) для захоронения или хранения радиоактивных отходов, зависит от ряда факторов: экономических, правовых, социально-политических и природных. Особая роль отводится геологической среде — последнему и важнейшему барьеру защиты биосферы от радиационно опасных объектов.[5-7]

Пункт захоронения должен быть окружен зоной отчуждения, в которой допускается появление радионуклидов, но за ее границами активность никогда не достигает опасного уровня. Посторонние объекты могут быть расположены не ближе, чем на расстоянии 3 радиусов зоны от пункта захоронения. На поверхности эта зона носит название санитарно-защитной, а под землей представляет собой отчужденный блок горного массива.

Отчужденный блок необходимо изъять из сферы человеческой деятельности на период распада всех радионуклидов, поэтому он должен располагаться за пределами месторождений полезных ископаемых, а также вне зоны активного водообмена. Проводимые при подготовке к захоронению отходов инженерные мероприятия должны обеспечить необходимый объем и плотность размещения РАО, действие систем безопасности и надзора, а том числе долговременный контроль за температурой, давлением и активностью в пункте захоронения и отчуждаемом блоке, а также за миграцией радиоактивных веществ по горному массиву.

С позиций современной науки, решение о конкретных свойствах геологической среды на участке хранилища должно быть оптимальным, то есть отвечающим всем поставленным целям, и прежде всего гарантирующим безопасность. Оно должно быть объективным, то есть защищаемым перед всеми заинтересованными сторонами. Такое решение должно быть доступным для понимания широкой общественности.

Решение должно предусмотреть степень риска при выборе территории для захоронения РАО, а также опасность возникновения различных чрезвычайных ситуаций. При оценке геологических источников риска загрязнения окружающей среды необходимо учитывать физические (механические, тепловые), фильтрационные и сорбционные свойства горных пород; тектоническую обстановку, общую сейсмическую опасность, новейшую активность разломов, скорость вертикальных движений блоков земной коры; интенсивность изменения геоморфологических характеристик: водообильность среды, активность динамики подземныhttp://zab.chita.ru/admin/pictures/426.jpgх вод, включая влияние глобального изменения климата, подвижности радионуклидов в подземных водах; особенности степени изоляции от поверхности водонепроницаемыми экранами и образования каналов гидравлической связи подземных и поверхностных вод; наличие ценных ресурсов и перспектив их обнаружения. Эти геологические условия, определяющие пригодность территории для устройства хранилища, должны оцениваться независимо, по представительному параметру для всех источников риска. Они должны обеспечить оценку по совокупности частных критериев, связанных с горными породами, гидрогеологическими условиями, геологическими, тектоническими и минеральными ресурсами. Это позволит экспертам дать корректную оценку пригодности геологической среды. При этом неопределенность, связанная с узостью информационной базы, а также и с субъективизмом экспертов, может быть уменьшена применением оценочных шкал, ранжированием признаков, единой формой опросных листов, компьютерной обработкой результатов экспертизы. Сведения о типе, количестве, ближайшей и долгосрочной динамике поступления ОЯТ предоставят возможность выполнить районирование территории области, чтобы оценить пригодность участков для размещения хранилища, устройства (использование) коммуникаций, развития инфраструктуры и прочих смежных, но не менее важных проблем.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13 


Другие рефераты на тему «Экология и охрана природы»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы