Методы дозиметрии

В практике дозиметрии радиоактивных излучений применяются два типа приборов: дозиметры для измерения дозы или мощности дозы, работающие на принципе определения суммарного эффекта ионизации в данном объеме, и счетчики радиоактивных излучений, позволяющие регистрировать действие отдельных частиц, или квантов.

Химические методы

Химический метод дозиметрии основан на измерении числа молекул

ионов, образующихся или претерпевших изменения при поглощении веществом излучения. Число образующихся молекул или ионов (выход радиационно-химической реакции) пропорционально поглощенной дозе излучения.

где: D — доза излучения; К—коэффициент пропорциональности; С — концентрация продукта радиационно-химической реакции; B — плотность вещества, подвергшегося облучению;

G — (выход продукта) — выражается числом молекул атомов, ионов или свободных радикалов, образующихся или расходуемых при поглощении энергии 100 эВ; Радиационно-химический выход вещества можно разделить на четыре группы:

• G< 0,1

• 0,1 < G < 20

• 20 < G < 100

•G>100

Высокий выход в веществах 3-й и 4-ой групп обусловлен, как правило, цепными химическими реакциями. Для целей дозиметрии наиболее пригодны вещества 2-й и 3-й групп, так как имеют лучшую воспроизводимость результатов и меньше чувствительны к влиянию освещения, примесей и колебаний температуры.

Многие химические дозиметры представляют собой водные растворы некоторых веществ. Наиболее распространенной химической системой применяемой при дозиметрии ионизирующих излучений является раствор соли FeSO4 в разбавленной серной кислоте. В растворе в результате электролитической диссоциации присутствуют ионы двухвалентного железа Fe2+. Под действием излучения происходит радиолиз воды (ионизация) с образованием свободных радикалов H, ОН, и окислителей, которые окисляют двухвалентное железо до трехвалентного по реакциям

Fe2+ + ОН ->Fe1+ +OH-

Fe2+ + H2O2 -» Fe3+ + ОН + ОН и некоторым другим

Появление Fe3 изменяет оптическую плотность раствора, которая измеряется спектрофотометром (прибором для измерения поглощения видимого света в различных областях спектра).

Изменение оптической плотности зависит от числа образовавшихся в результате облучения и завершения всех реакций ионов трехвалентного железа и служит мерой поглощенной энергии.

Энергия, поглощенная в химическом дозиметре, определяется соотношениями

E=M(Sобл- Sчист)

где Sобл и Sчист — оптическая плотность облученного и необлученного растворов,

M—коэффициент, зависящий от свойств дозиметра и условий облучения

Sобл- Sчист= µ*C*1

где µ —коэффициент поглощения, зависящий от температуры,

С —концентрация ионов трехвалентного железа,

1 — толщина слоя раствора

Таким образом, по изменению оптической плотности раствора можно определить концентрацию продукта, образовавшегося в растворе под действием излучения. Зная концентрацию образованных ионов и радиационно-химический выход реакции их образования, можно легко вычислить поглощенную дозу облучения.

Например, для ферросульфатного дозиметра радиационно-химический выход составляет 15,6 ±0,5.

Основным компонентом данного дозиметра является вода, и эффективный атомный номер по поглощению фотонного излучения для раствора близок к эффективному атомному номеру воды, а следовательно и живой ткани. Поэтому дозиметр практически не имеет хода с жесткостью в диапазоне энергий 100 кэВ — 2 МэВ. Погрешность измерения (особенно при больших дозах) составляет не более 1 %.

В состав химических дозиметров тепловых нейтронов добавляют небольшое количество солей бора или лития. Для учета действия і - фотонов одновременно с нейтронным дозиметром облучают аналогичный дозиметр без добавок бора и лития. Известно некоторое количество различных веществ которые в результате окислительных или восстановительных реакций, протекающих под действием ионизирующего излучения, меняют свою окраску. Если в раствор такого вещества добавить около 10% желатина, а затем раствор охладить, то получится гель-студенистое вещество сохраняющее свою форму. Если облученный гель разрезать на части, то можно получить пространственное распределение поглощенной дозы. Обладая рядом бесспорных преимуществ, химический метод регистрации ионизирующих излучений, тем не менее, крайне редко используется в практической дозиметрии, так как даже у наиболее чувствительных химических дозиметров нижний предел измерения составляет порядка 5 сГр.

Ионизационный метод

Ионизационный метод основан на способности ионизирующего излучения вызывать ионизацию среды. Если взять какое-либо непроводящее электрический ток вещество и поместить его в поле действия ионизирующего излучения, то при взаимодействии излучения с веществом часть энергии передается атомам и молекулам этого вещества и расходуется на их ионизацию. В веществе появляются положительно и отрицательно заряженные ионы. При отсутствии электрического поля ионы рекомбинируют между собой и в результате в веществе устанавливается равновесная концентрация ионных пар (равенство скоростей ионизации и рекомбинации при постоянной интенсивности излучения).

Если к веществу приложить разность потенциалов, то в нем возникает электрическое поле, под действием которого положительные ионы перемещаются к отрицательному электроду, а отрицательные — к положительному электроду. В результате этого в цепи возникает электрический ток. При определенных условиях сила тока пропорциональна интенсивности излучения, воздействующего на вещество.

Опис : image156.jpg

Рис. 1. Простейшая схема ионизационного детектора

Ионизационные детекторы по конструкции подобны конденсаторам, то есть имеют два электрода, разделенные диэлектриком. В качестве диэлектрика обычно используют газ или смесь газов.

На ион зарядом е в электрическом поле напряженностью E действует сила, равная произведению е . E. Под действием этой силы ионы движутся к электродам, причем скорость их движения пропорциональна напряженности электрического поля. При достаточно большой напряженности скорость перемещения электронов (как более легких частиц) может возрасти настолько, что электрон на длине свободного пробега (от столкновения до столкновения) разгоняется до энергии, превышающей потенциал ионизации атомов и молекул газа. Неупругие столкновения с таким электроном приводят к ионизации атомов и молекул. Этот процесс, названный ударной ионизацией, увеличивает число пар ионов, образующихся в газе, и является механизмом газового усиления ионизационного эффекта регистрируемого излучения.

Люминесцентный метод

Сущность метода заключается в том, что в некоторых веществах (люминофорах) образованные под действием ионизирующего излучения носители заряда (электроны и дырки) локализуются в центрах захвата, благодаря чему происходит накопление поглощенной энергии, которая может быть затем освобождена при дополнительном внешнем воздействии (возбуждении).

Страница:  1  2  3  4 


Другие рефераты на тему «Биология и естествознание»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы