Методы дозиметрии

Чаще всего дополнительным возбуждением может быть либо освещение люминофора светом определенного спектра, либо его нагрев (фотолюминесценция и термолюминесценция). Рассмотрим механизм термолюминесценции:

Опис : Image

Рис. 2. Механизм термолюминесценции: 1 — переход электрона из валентной зон

ы в зону проводимости; 2 — захват дырки центром люминесценции; 3 — захват электрона ловушкой; 4 — освобождение электронов при нагреве кристалла; 5 — рекомбинация электронов с дырками в центрах люминесценции; 6 — возбуждение центра люминесценции; 7 — излучательный переход в основное состояние.

Электрон, поглощая энергию ионизирующего излучения, переходит из валентной зоны в зону проводимости. Образующаяся дырка переходит в запрещенную зону и создает центр люминесценции. Если в запрещенной зоне имеется электронная ловушка, обусловленная дефектом кристалла или введением примесей, то она захватывает электрон и электрон переходит в метастабильное состояние. Внешнее воздействие сообщает электрону дополнительную энергию и он вновь переходит в зону проводимости, после чего рекомбинирует с дыркой (центром люминесценции). Центр люминесценции переходит в возбужденное состояние, которое снимается излучением светового фотона. В дальнейшем световые вспышки переводятся в электрический сигнал.

Заключение

При дозиметрии ионизационных излучений используют как инструментальные, так и расчетные методы. Все дозиметрические приборы устроены по принципу регистрации радиационно-индуцированных эффектов в некотором модельном объекте — детекторе ионизирующего излучения. В ранний период становления дозиметрии, использовались фотографическое действие ионизирующих излучений, химические превращения и выделение тепла. По мере развития методов регистрации элементарных частиц развивались и методы дозиметрии. В современных условиях используется широкий спектр радиационно-индуцированных эффектов. К уже упомянутым можно добавить ионизационные эффекты в газах и конденсированных средах, изменение электрических свойств полупроводников, деструктивные повреждения твердых тел, люминесценцию, сцинтилляцию и др. Особое место занимает биологическая дозиметрия использующая в качестве меры дозиметрической величины количественные радиобиологические эффекты, например хромосомные аберрации, изменение морфологического состава крови и другие показатели, однозначно связанные с дозиметрией ионизационных излучений. Методы дозиметрии ионизационных излучений можно классифицировать по разным признакам. Так, в зависимости от вида регистрируемого эффекта различают ионизационный, фотографический, химический, люминесцентный, калориметрический, сцинтилляционный методы, метод следов повреждения и др. При этом имеет место однозначная количественная связь между изменением физических или химических свойств детектора излучения и поглощенной энергией. В клинической дозиметрии распространены ионизационные методы, в которых детектором служат ионизационная камера, твердотельные люминесцентные кристаллы, полупроводники. Последние привлекают малыми размерами детектора.

Литература

1. Профессор И. Н. Бекман «курс лекций по ядерной медицине»

2. В. И. Иванов «Курс дозиметрии»

3. Ярмоненко С.П., Вайнсон А.А. «Радиобиология человека и животных»

4. Журнал «Український медичний часопис» - №1 (39), I/II 2004

5. Машкович В. П. Защита от ионизирующих излучений

6. Матвеев А.В., Козаченко В.И., Котов В.П. Практикум по дозиметрии и радиационной безопасности

7. Интернет ресурсы:

8. http://medicina.at.ua/publ/1-1-0-116

9. http://www.serdechno.ru/enciklopediya/5135.html

Страница:  1  2  3  4 


Другие рефераты на тему «Биология и естествознание»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы