Разработка системы защиты атмосферы при производстве поливинилхлорида

Очень пористый ПВХ с развитой поверхностью получается при использовании в качестве инициаторов полимеризации гидроперекисей алифатических или циклических кетонов и их производных. Так как в этих инициаторах присутствуют гидроксильные группы, они обладают определенным гидрофильно-гидрофобным балансом и располагаются на границе раздела фаз вода-мономер, где и происходит инициирование полимеризаци

и. Кроме того, поскольку такие инициаторы растворимы не только в мономере, но и в воде, полимеризация, по-видимому, протекает частично и в водном растворе, что, как уже указывалось, сильно влияет на морфологию образующегося ПВХ.

Свойства поливинилхлорида в большой степени определяются природой и свойствами применяемых защитных коллоидов и различных добавок.

Роль стабилизаторов эмульсии в процессах суспензионной полимеризации винилхлорида заключается в защите диспергированных в полимеризационной среде капель от коалесценции особенно в период, когда частицы имеют большую липкость.

Применяемые для этой цели защитные коллоиды не создают эффекта сопряженной, или мицелярной растворимости, и поэтому их нельзя отнести к эмульгаторам, как, например, вещества типа мыл. Часто применяемое к защитным коллоидам для суспензионной полимеризации название “диспергаторы" не является точным, так как, хотя диспергаторы и влияют на размеры частиц эмульсии, диспергирование осуществляется здесь за счет перемешивания [7].

В качестве стабилизаторов эмульсии при суспензионной полимеризации используются соединения двух классов:

Минеральные нерастворимые в воде соединения, способные образовывать тонкодисперсные взвеси, например гидроокиси металлов, фосфаты, карбонаты, каолин, коллоидная глина (бентонит) и т.п.

Органические водорастворимые высокомолекулярные соединения.

В качестве защитных коллоидов наиболее часто используются гидроокись магния, поливиниловый спирт, метилцеллюлоза, желатин и поливинилпирролидон.

Добавки:

а) Поверхностно-активные вещества типа мыл (ионогенные и неионогенные), которые способствуют лучшему диспергированию винилхлорида, разрыхлению поверхности образующихся частиц, повышению их пористости.

б) Добавки, растворимые в мономере. Они способствуют образованию рыхлых пористых частиц ПВХ.

в) Окислы гидроокиси или соли металлов (бария, кадмия, стронция, кальция, магния, свинца). Оказывают влияние на морфологию образующегося полимера, оседая на границе раздела фаз.

г) Антиоксиданты. Уменьшают количество образующихся полиперекисей и хлористого водорода. Одновременно возрастает термостабильность ПВХ.

д) Регуляторы рН (водорастворимые карбонаты и фосфаты, пирофосфат натрия).

е) Регулятор молекулярного веса [9].

Технология получения суспензионного ПВХ

Для получения полимера с заданными физико-механическими свойствами правильно выбранная рецептура должна сочетаться с оптимальными условиями технологического процесса. Используемая аппаратура и технологические приемы на подготовительной стадии должны обеспечить:

Тщательную очистку полимеризатора от остатков полимера, осевшего на внутренних поверхностях аппарата в ходе предшествующей операции полимеризации;

Практически полное удаление кислорода из полимеризационной среды;

Равномерное распределение в полимеризационной среде всех используемых компонентов.

Важнейшим параметром процесса является температура полимеризации. В зависимости от желаемой степени полимеризации ПВХ температуру поддерживают в пределах 45-75 0С. При этом давление в автоклаве соответствует упругости паров винилхлорида при данной температуре и колеблется в пределах 6-10 атм. Для получения ПВХ с наиболее узким молекулярно-весовым распределением температуру в процессе полимеризации поддерживают в небольших пределах. Отклонения от заданной температуры допускаются не более чем на 0,5 0С. В современном промышленном процессе полимеризации винилхлорида такой режим обеспечивается путем автоматического регулирования температуры в полимеризаторе [5].

Процесс полимеризации проводят в автоклавах-полимеризаторах (объемом от 10 до 25 м3) с охлаждающей рубашкой. Циркуляция охлаждающей воды осуществляется индивидуальным насосом, связанным с системой автоматического регулирования температуры. Полимеризатор рассчитан на рабочее давление 12-16 кГ/см2. Он снабжен импеллерной мешалкой. Привод мешалки может быть расположен в верхней или в нижней части аппарата. Однако нижний привод менее удобен, так как при этой конструкции не обеспечивается полное удаление суспензии из аппарата. Соотношение высоты автоклава, его диаметра чаще всего принимается в пределах 1,5-1,7. После загрузки полимеризатора и подогрева реакционной смеси до заданной температуры начинается собственно полимеризация. При этом автоматически включается водяное охлаждение для снятия тепла реакции.

Одной из проблем промышленного процесса получения суспензионного ПВХ является преодоление коркообразования на внутренних поверхностях полимеризатора. Образующиеся корки затрудняют теплопередачу, ухудшают качество получаемого полимера. Это вынуждает периодически вскрывать полимеризатор для его очистки. На плохо охлаждаемых участках поверхности наблюдается более интенсивное отложение полимера. Полимеризатор чаще всего изготавливают из биметалла. Чтобы уменьшить коркообразование, внутренние поверхности автоклава полируют. Коркообразование уменьшается также при применении эмалированных автоклавов [9].

Полимеризация считается законченной после того, как давление в автоклаве начинает понижаться. Незаполимеризовавшийся мономер сдувается в газгольдер. Адсорбированный в полимере и растворенный в водной фазе мономер также удаляется. Это необходимо как для исключения возможности полимеризации остаточного мономера при последующих операциях обработки суспензии или сушки полимера, так и из санитарных соображений. В некоторых случаях сразу же после окончания полимеризации в автоклав вводят небольшое количество ингибитора (акцептора свободных радикалов) с тем, чтобы во время сдувки мономера, дегазации суспензии и дальнейшей ее обработки полимеризация не могла продолжаться.

Удаление остаточного мономера из суспензии осуществляется путем ее перемешивания под вакуумом в течение некоторого времени (30-40 мин). Дегазация суспензии может производиться также путем кратковременной ее продувки острым паром или отпаркой мономера в специальных колонках.

Мономер, сдутый после окончания полимеризации из автоклава, а также извлеченный вследствие дегазации суспензии, из газгольдера направляется на ректификацию, после чего возвращается на полимеризацию.

Освобожденная от мономера суспензия, пройдя коркоуловитель, собирается в сборник-усреднитель, где она смешивается с суспензией от нескольких операций, проведенных по одинаковым рецептуре и режиму. Усреднение суспензии улучшает однородность ПВХ.

Дальнейшие стадии процесса осуществляются непрерывно. Выделение полимера из суспензии в промышленности проводится чаще всего на отстойных центрифугах непрерывного действия. Иногда для промывки полимера прибегают к дополнительной репульпации. Фильтрующие центрифуги менее пригодны, так как тонкие фракции полимера не удерживаются фильтровальным полотном, что приводит к потере полимера. Отжатый полимер, содержащий 20-30% воды, сушится горячим воздухом. В современных производствах суспензионного ПВХ часто используются трубы-сушилки, требующие небольших производственных площадей. Их преимущества заключаются в том, что сушка полимера протекает с большой скоростью, время пребывания полимера в зоне сушки измеряется несколькими секундами, что исключает его деструкцию. Используются также камерные сушильные агрегаты, в которых сушка полимера протекает в “кипящем” слое, или вращающиеся барабанные сушилки.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22 


Другие рефераты на тему «Безопасность жизнедеятельности и охрана труда»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы