Метеоры, болиды и методы их наблюдения

Уже отмечалось, что быстрое движение метеоров затрудняет применение классических наблюдений, хорошо разработанных в астрофизике. Долго, например, не удавалось получить истинный фотопортрет метеора; мешало его быстрое движение.

Наконец, в 1964 г. академик АН ТаджССР П.Б. Бабаджанов и одесский астроном профессор Е.Н. Крамер разработали метод, названный впоследствии методом мгновенной экспозиц

ии. В его основе лежит идея уменьшения времени фотографирования метеоров с помощью специально сконструированного вращающегося затвора. Затвор, непрерывно вращаемый электродвигателем, обеспечивает периодическое фотографирование объекта с частотой 50 экспозиций в секунду. Длительность каждой экспозиции составляет 0,00056 секунды. В среднем за одну ночь число таких экспозиций достигает миллиона. Когда в поле зрения камеры оказывается метеор, то получается от нескольких единиц до нескольких десятков его мгновенных портретов.

Воплотил идею в жизнь талантливый душанбинский механик И.Ф. Малышев, разработавший уникальную конструкцию и своими руками изготовивший весь механизм до последнего винтика. За обманчивой простотой его конструкторских и технических решений стоял не только точный расчет и профессиональная сноровка, но и неуловимое потустороннему глазу вдохновение мастера, чувствующего тонкую гармонию деталей и узлов, слившихся в единую безупречную систему.

После пуска 16 камер в Душанбе Малышев по просьбе профессора Крамера осуществил аналогичную конструкцию и в Одесской астрономической обсерватории. AAAAAAAAAAAAAAAAAAAAAAAAAAA

Первые систематические наблюдения метеоров этим методом были начаты в Институте астрофизики Академии наук Таджикской ССР. Для этой цели использовались 16 неподвижных камер, оснащенных новыми затворами. Начало было удручающим; сотни широкоформатных негативов буквально «обшаривались» вдоль и поперек, и всякий раз финиш поисков разочаровывал: на снимках ничего, кроме густого «леса» из суточных следов звезд, не было. На память не раз приходили дискуссии по поводу эффективности нового метода. Тогда некоторые специалисты полагали, что применение очень коротких экспозиций неприменимо при фотографировании метеоров. Тем не менее, наблюдения проводились регулярно во все ясные безлунные ночи, и материал тщательно просматривался.

И вот, наконец, на шестой сотне снимков муки ожидания кончились. Метеоры стали появляться. Сначала это были лишь слабые невыразительные штрихи, но потом, по мере того, как удавалось сфотографировать более яркие метеоры, картина изменилась. Впервые в мире были получены истинные фотопортреты метеоров, которые отличались большим разнообразием.

В дальнейшем перед объективами восьми камер были помещены дифракционные решетки и получен первый мгновенный спектр метеора…

Еще в конце 20-х – начале 30-х годов в СССР, США и Японии было обнаружено, что на распространение радиоволн влияют эпизодически возникающие очаги ионизации, порождаемые пролетами метеороидов. Действительно, при полете метеороида в атмосфере Земли испарившиеся атомы метеорного вещества, сталкиваясь с молекулами воздуха, теряют электроны. На всем протяжении атмосферной траектории метеора создается ионизационный след, содержащий большое количество свободных электронов. При достаточной концентрации электронов радиоволна, посланная с Земли радиолокатором, отразится от следа, как от миниатюрной ионосферы или твердого тела.

Во время второй мировой войны мощные радиолокаторы в Великобритании использовались для дальнего обнаружения фашистских самолетов и ракет «Фау-2». На первых порах персонал, обслуживавший систему, неоднократно попадал впросак. Локаторы регистрировали отражения от движущейся цели, поднималась тревога, приводились в боевую готовность орудия, с аэродромов взлетали истребители, но ни ракет, ни вражеских самолетов в небе не оказывалось. Причина таких отражений продолжала оставаться загадочной, пока однажды момент отражения сигнала не совпал с появлением болида. Ситуация прояснилась, и работники радиолокационной службы разработали методику распознавания ложных сигналов.

После окончания войны определенный период времени средства противовоздушной обороны продолжали работать и «между делом» регистрировать отражения от метеорных следов. Было установлено, что подавляющее количество радиоотражений возникает при абсолютно чистом небе, когда отсутствуют метеоры, которые можно сфотографировать или увидеть визуально. Это могло означать, что радиолокаторы способны регистрировать значительно более слабые метеоры, порождаемые мелкими метеорными частицами. При этом число радиометеоров намного превышало число оптически наблюдаемых метеоров.

Характерно, что ионизационный след, образованный метеором, разрушается не мгновенно, и электроны в свободном состоянии в достаточно большой концентрации могут существовать от нескольких секунд до десятков и сотен секунд, т.е. радиоотражения от метеорного следа продолжаются и после того, как метеорное тело полностью испарилось. Этим немедленно воспользовались исследователи верхней атмосферы. Дело в том, что метеорные следы не остаются неподвижными, а дрейфуют под воздействием верхнеатмосферных ветров и поэтому являются прекрасными источниками информации о скорости и направлениях воздушных течений на высотах 60 – 120 км. Этот геофизический аспект радиолокационных наблюдений метеорных следов чрезвычайно сильно стимулировал развитие целой сети метеорных радиолокационных станций на Земле. Как правило, с помощью одной и той же станции параллельно решаются и задачи метеорной астрономии, и геофизические задачи.

Наблюдения метеоров с помощью радиолокаторов проводятся теперь все шире и шире. Передатчик мощностью до нескольких тысяч киловатт посылает направленные волны, вращая свой луч. Радиоволна, попадая на след метеора, отражается обратно и отмечается время прохождения сигнала, дающее расстояние до метеора. Расстояние от летящего метеора до наблюдателя меняется; меняется также время прохождения сигнала от разных точек пути метеора.

На рис.3 схематически показаны пути метеоров (I,III) и соответствующая картина на экране радиолокатора (IV). Форма кривой позволяет определить быстроту полета. Легко понять, что чем быстрее полет, тем быстрее меняется расстояние до метеора и тем круче кривая на экране II, направленная вершиной книзу. На рисунке приведены кривые, соответствующие двум различным скоростям движения. Нижняя точка кривой отмечает время Т0, когда метеор проходит на кратчайшем расстоянии от наблюдателя. В виде кривой получается запись с экрана полета головной части метеора, а запись остающегося и расплывающегося следа его – в широкой полосы (IV). Примеры таких записей даны на схеме IV внизу, правее записи от трех метеоров, из которых только метеор б миновал наблюдателя и удалился. Метеоры а и в оставили за собой следы, постепенно таявшие. Фактический вид экрана радиолокатора показан на нижних фотографиях.

Хотя радиолокационный метод наблюдений метеоров позволил получить много сведений о мелких метеорных телах, в особенности об их количестве, его нельзя считать идеальным средством исследования. Во-первых, он уступает фотографическому методу по точности определения различных характеристик метеороидов, во-вторых, не позволяет получать данные о химическом составе мелких метеорных частиц (а это очень важно), в-третьих, все-таки не дает наглядной картины самого метеорного явления, что ограничивает возможности детального исследования индивидуальных метеороидов.

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Астрономия, авиация и космонавтика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2019 - www.refsru.com - рефераты, курсовые и дипломные работы