Проблема тепловой смерти Вселенной

Второй аргумент – незамкнутость Вселенной, поскольку второй закон термодинамики справедлив лишь для замкнутых систем. Можно было бы выставить здесь и контраргумент – для Вселенной в целом нет ничего внешнего по определению. Поэтому ее можно считать и замкнутой, хотя лучше всего здесь было бы сказать, что понятия замкнутости и незамкнутости по отношению к такому специфичному объекту, который вкл

ючает в себя все сущее, не могут быть определены. Но можно и не апеллировать к понятию целого. Очень большие части любых систем вообще скорее замкнуты: чем большую часть Вселенной мы рассматриваем, тем меньше для нее, вообще говоря, отношение ограничивающей поверхности к объему. Роль внешних воздействий становится для такой части все менее существенной. Если же учесть наличие горизонта видимости, из-за которого никакие взаимодействия к нам не доходят, астрономическую Вселенную вполне допустимо считать замкнутой. Впрочем, здесь есть свои сложности, на которых останавливаться тоже не будем.

Последний, третий аргумент из числа обычно используемых – нестационарность Вселенной. Помимо того, что именно она (наряду с конечностью скорости света) приводит к появлению горизонта, нестационарность не дает возможности установиться состоянию с Smax, поскольку оно предполагается неизменным, т.е. как будто стационарным. В действительности это вовсе не так. В тех однородных и изотропных моделях Вселенной, которые чаще всего рассматривают космологи, расширение напоминает увеличение объема газа, происходящее без подвода или отвода тепла. Такие процессы называются адиабатными и происходят они без изменения энтропии. Не меняет расширение Вселенной и величины Smax. Из-за разнообразных необратимых явлений, которые сопутствуют расширению Вселенной, энтропия все же растет. Поэтому тенденция роста сохраняется, несмотря на расширение. Разумеется, при его неограниченности рано или поздно прекратится взаимодействие между отдельными телами и состояние «заморозится» на некотором отличном от максимального уровне. Такое состояние не является классической тепловой смертью, но по существу мало чем от нее отличается. Ведь всякое развитие здесь тоже прекращается. Ниже эта ситуация будет рассмотрена подробнее.

Для пульсирующей Вселенной картина поведения энтропии оказывается лишь немного другой. Для однородной системы все пульсации оказываются одинаковыми и тоже идут при постоянстве энтропии. Если учесть внутренние необратимые процессы, рост энтропии снова неизбежен, причем в целом энтропия растет и от пульсаций (Я. Б. Зельдович и И. Д. Новиков). На какой-то из ранних стадий энтропия по идее должна быть минимальной, может быть, равной нулю. Следовательно, если в будущем возможен неограниченный рост энтропии, то в прошлом мы должны допустить неизбежность некоторого абсолютного начала, что с общеметодологической точки зрения ничуть не лучше признания конца развития. Впрочем, здесь снова можно вспомнить об условном начальном моменте, когда в гипермире появилась флуктуация «нужного» масштаба, объясняющая и определяющая все дальнейшее поведение.

По мнению многих ученых, неприменимость второго закона термодинамики ко всей Вселенной имеет более глубокий смысл, связанный с ее бесконечным разнообразием. Оно может быть начальным, но может быть и результатом развития более простого образования, описываемого на первых порах простыми моделями, о которых выше говорилось. Но даже в рамках стандартной релятивистской космологии мы сталкиваемся с возможностью использования различных однородных моделей для описания одного и того же распределения вещества. В этой связи сформулирован принцип космологической неопределенности Мак-Рея. В разных моделях если не общий характер, то темп изменений оказывается принципиально неодинаковым – вплоть до того, что время эволюции, бесконечное в одних моделях, может быть конечным в других. То же касается и пространственных свойств моделей. Для иллюстрации этого представим себе, что физический мир обладает необычайным свойством – уменьшать масштабы при движении от некоторого центра. А именно, делая шаг, мы по какой-то причине удаляемся от центра всего на полшага. Делая второй, продвигаемся всего на четверть и т.д. Очевидно, сделав сколь угодно много шагов, мы не продвинемся вперед больше, чем на один первоначально отмеренный шаг. Но подобное, если и не в точности такое уменьшение на самом деле происходит при движении с большой скоростью по отношению к некоторой лабораторной системе отсчета при расширении Вселенной – это известное лоренцево сокращение движущихся масштабов. А. Л. Зельманов обратил внимание на то, что бесконечный в своей координатной системе мир может быть лишь частью другого мира. При этом последний в своей координатной системе может быть даже конечным. Таким образом, понятия конечности и бесконечности (не только пространственнй но и временной) являются не абсолютными, а относительными.

Еще более сложная ситуация может быть в неоднородной системе с вращением. Здесь, как оказывается, нельзя непротиворечивым образом ввести понятие одновременности событий. Пространство, как говорят, становится неголономным. Все это означает, что лишается смысла понятие «состояние системы в определенный момент времени». А наличие горизонта, несвязность или многосвязность больших областей гипермира делают сомнительным и само понятие единой физической системы по отношению ко Вселенной. В этих условиях, по нашему мнению, нет смысла вводить или как-то обощать глобальные понятия, такие, как полная энергия, энтропия, вероятность состояния.

Мы не останавливаемся здесь на важной роли (подчеркиваемой А.П. Трофименко) в термодинамике так называемых отонов, в частности, вращающихся (керровских) черных дыр, которые представляют собой яркий пример неоднородностей в мире, делающих его многосвязным. Тем более невозможно здесь говорить о явлениях, определяемых возможной разномерностью отдельных частей гипермира и прочем важном и интересном, что, однако, физической наукой только допускается, но детально пока не изучено.

Суммируя сказанное, еще раз выделим возможные варианты изменения энтропии и вероятности состояния в мире, при которых о тепловой смерти можно забыть:

1. Энтропия увеличивается неограниченно.

2. Все состояния Вселенной имеют примерно одинаковые вероятности состояния и энтропии, весьма далекие от максимальных значений.

3. Понятия энтропии и вероятности состояния для существенно неоднородной и, возможно, многосвязной Вселенной не имеют смысла. Каждый вариант решает проблему по-своему. Кроме того, первый переносит, по существу, проблему конца развития куда-то в начало, что кажется мало подходящим для гипермира или Вселенной в целом.

Заключение

Тепловая смерть Вселенной – это вывод о том, что все виды энергии во Вселенной в конце концов должны перейти в энергию теплового движения, которая равномерно распределится по веществу Вселенной, после чего в ней прекратятся все макроскопические процессы.

Согласно второму началу термодинамики, любая физическая система, не обменивающаяся энергией с другими системами (для Вселенной в целом такой обмен, очевидно, исключен), стремится к наиболее вероятному равновесному состоянию – к так называемому состоянию с максимумом энтропии.

Страница:  1  2  3  4 


Другие рефераты на тему «Астрономия, авиация и космонавтика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы