Проблема эволюции Вселенной

Как известно, в развитии фундаментальных физических теорий можно усмотреть принцип соответствия, согласно которому, если теорию, построенную для одного структурного уровня материи, обобщить на более фундаментальный ее уровень, то первая теория будет вытекать из второй как ее предельный случай, т.е. законы менее фундаментального уровня являются частным случаем законов более фундаментального уров

ня. Можно ли увидеть принцип соответствия между концепциями пространства-времени? Положительный ответ на этот вопрос позволяет дать принцип метрической самоорганизации материи, который, к тому же, позволяет понять, почему следует отобрать в качестве основных только три фундаментальные физические концепции пространства-времени (вакуумную, суперструнную и классическую гравитационную). На первый взгляд кажется, что принцип соответствия теорий (например, классической механики, СТО и ОТО) можно перенести и на принцип соответствия концепций пространства-времени. Однако это не так. Между принципами соответствия физических теорий и пространственно-временных концепций имеется существенное различие ввиду того, что многие физические теории, как исходные, так и обобщенные, основываются на одной и той же концепции пространства-времени. Эволюцию же физики от классической механики до СТО нельзя рассматривать как скачок в концептуальном описании пространства-времени, но лишь как уточнение классической гравитационной концепции пространства-времени. Когда эта концепция была уточнена (Эйнштейн схватил идею о существенности полевого аспекта материи в физической экспликации пространства-времени) и на ее основе построена вся физика, но только после этого стал возможен качественный скачок к новой, суперструнной концепции пространства-времени. Реляционная концепция пространства-времени в таком случае оказывается на окраине внимания, она существенна только в практических целях.

Говорить о преемственности пространственно-временных концепций при расширении научного познания можно на двух уровнях: уровне математического представления и уровне физической экспликации. Нетрудно проследить переход от плоского метрического инерциального поля к гравитационному и далее суперструнному полям или от 4-мерного пространства-времени Микковского к 4-мерному пространству-времени Римана и далее к 10-мерному суперструнному пространству-времени.

Наличие самоорганизующихся систем позволяет по-новому взглянуть на причинность. Под физической причинностью понимают наличие неких воздействий, в результате которых происходит изменение в материальной системе. Следует различать состояние материальной системы и переход ее в новое состояние (процесс). Процесс может описываться, а может и не описываться эволюционным уравнением. Состояние будет классическим, если оно строго определено, и статистическим, если оно вероятностно. По характеру воздействий причины могут быть внешними, внутренними и совместными (теми и другими). Переходы из одного состояния в другое могут быть однозначно определенными или вероятностными, могут совершаться под действием внешних или внутренних (или совместных) воздействий. Однозначные переходы можно назвать динамическими, вероятностные статистическими, они определяются типом воздействий, среди которых можно выделить динамические и статистические.

Состояния рассматриваются в определенный момент времени и в определенной области пространства, переходы же происходят в течение определенного промежутка времени, как в ту же, так и в другую область пространства. Поэтому причинность связана не только с типом систем, но и со свойствами пространства-времени, которые могут быть различными в различных своих частях. Поскольку вместе с эволюцией Вселенной эволюционирует и пространство-время, то будет изменяться и форма причинности. Значит, в причинности можно выделить два аспекта: системный и пространственно-временной.

Обычно рассматривают причинность по отношению к переходам (процессам), но концепция самоорганизации материи показывает, что переходы связаны с состояниями и могут происходить только из специфических (сильно возбужденных) состояний. Поэтому причинность следует распространить и на состояния.

Выделим обычные формы системной причинности. Если система классична, как по своим состояниям, так и по переходам, то ее можно назвать вполне детерминированной (примерами могут служить классическая система материальных точек, классическое электромагнитное поле). Вполне детерминированная система дважды инертна (как по состоянию, так и по переходу) в том смысле, что она неспособна к самодвижению, ибо все в ней строго определено и никаких отклонений (флуктуаций) быть не может. Систему, статистическую по своим состояниям, но динамическую по переходам, можно назвать детерминированной (пример идеальный газ). В детерминированной системе заложена возможность к саморазвитию, ибо увеличение флуктуаций ее состояния может привести к необратимым последствиям. Система, классическая по своим состояниям, но статистическая по переходам, будет статистически детерминированной (например, броуновские частицы). Такие системы связаны с необратимостью, они играют большую роль, ибо уже на классическом уровне могут демонстрировать роль случая. Если же система статистична как по своим состояниям, так и по переходам, то она будет вполне статистически детерминированной. Таковыми являются все микросистемы. Вполне статистически детерминированные системы являются фундаментальными системами природы и основными источниками ее эволюции. Их обобщением являются особые, самоорганизующиеся системы, которые, сильно флуктуируют по начальным данным и по конечным состояниям. На всех уровнях, будь то уровень макроскопической физики, уровень флуктуаций или микроскопический уровень, источником порядка является неравновесность. Неравновесность есть то, что порождает порядок из хаоса. Сказанное позволяет выделить пять форм системной причинности: вполне детерминированную, детерминированную, статистически детерминированную и самоорганизационную формы.

Необратимость приводит к глубоким изменениям понятий пространства, времени и динамики: время, связанное с флуктуациями, отлично от времени, связанного с обычными движениями, оно является скорее оператором, чем параметром, динамика должна быть включена в более широкий формализм и т.д. Сказанное можно отнести и к начальному этапу эволюции нашей Вселенной. Пространство, время и связанная с ними причинность до Большого взрыва могут быть названы доинфляционными.

Необходимо выделить формы пространственно-временной причинности, Д.И. Блохинцев отмечал: Причинность можно рассматривать как геометрическую категорию и исследование вопросов причинности есть лишь один из возможных аспектов анализа геометрии. Поэтому формы причинности можно классифицировать и по геометрии пространства-времени. Согласно Р. Герочу, если в физических процессах происходит изменение топологии пространства-времени, то оно воспринимается с точки зрения старой топологии как нарушение формы причинности. Поэтому переходы от Большого взрыва к свернутому метрическому пространству-времени, от него к 10-мерному пространству-времени суперструнной теории и далее к 4-мерному сильно развернутому псевдориманову пространству-времени связаны с изменением формы причинности. Поэтому пространственно-временная причинность эволюционирует вместе с эволюцией пространства-времени в связи с эволюцией Вселенной. При этом можно выделить следующие концептуальные формы пространственно-временной причинности, соответствующие основным стадиям эволюции Вселенной и пространственно-временным концепциям, существенным для них: вакуумную (характерную для метрически организованного вакуума), суперструнную (характерную для суперструнного поля), гравитационную (характерную для наблюдаемого мира), в частности, тривиальную гравитационную (характерную для процессов, происходящих в 4-мерном пространстве-времени Минковского).

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Астрономия, авиация и космонавтика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы