Солнце, его физические характеристики и воздействие на магнитосферу Земли

10. Магнитное поле

Геоэффективность СВ, т.е. эффективность передачи энергии СВ в магнитосферу Земли зависит от ориентации ММП и максимальна при отрицательной, южной ориентации и при больших величинах Bz. Если ситуация Bz>0 сохраняется больше 30-60 минут, можно с большой вероятностью ожидать развитие магнитосферной суббури. В возмущенном солнечном ветре отмечается несколько типов к

рупномасштабной конфигурации ММП - секторная структура, магнитные петли и пр.

10.1 Экспериментальные методы

Первые прямые измерения солнечного ветра были сделаны на советском космическом корабле в 1959 году (К.И. Грингауз) простой ионной ловушкой. В дальнейшем начали использовать детекторы частиц с все более лучшим энергетическим, временным и пространственным разрешением.

10.2 Вариации галактических космических лучей

Гелиосфера, изменчивость которой обусловлена процессами на Солнце, в свою очередь влияет на временное и пространственное распределение интенсивности галактических космических лучей. Влияние это проявляется в виде вариаций космических лучей, регистрируемых приборами, установленными на мировой сети станций космических лучей, космических аппаратах, спутниках и аэростатах.

Выделим следующие классы вариаций в порядке убывания периода: 11-летние вариации, связанные с соответствующей цикличностью солнечной активности. Интенсивность космических лучей в годы максимума солнечной активности на ниже, чем в минимуме. Амплитуда вариаций - от 10-50% в зависимости от энергетического диапазона и точки наблюдения регистрирующего прибора.

Двухлетние, годовые и сезонные вариации имеют меньшую амплитуду и отражают изменения солнечной активности, положения орбиты Земли относительно плоскости эклиптики и наклона земной оси.

27-дневные вариации обусловлены неоднородностью долготного распределения активных образований на Солнце и соответствующей секторной структурой солнечного ветра.

Форбуш-эффект, понижение интенсивности ГКЛ во время магнитных бурь. Главной причиной является экранирование Земли (и, соответственно, наземной регистрирующей аппаратуры) магнитными полями скоростных потоков солнечного ветра. Амплитуда эффекта может достигать 50%.

Суточные вариации связаны с анизотропией прихода ГКЛ к Земле, которая в свою очередь создается структурой магнитных полей гелиосферы. Амплитуда суточных вариаций - несколько процентов. На приведенном выше рисунке видна изменчивость амплитуды и фазы суточных вариаций.

Физические процессы, вызывающие перечисленные выше эффекты модуляции космических лучей известны.

Это прежде всего диффузия заряженных космических лучей на неоднородностях магнитного поля солнечного ветра. Кроме того, регулярная составляющая магнитного поля приводит к эффекту частичной канализации траекторий частиц вдоль силовых линий, создавая анизотропию. И, наконец, электрические поля, связанные с движением вмороженного магнитного поля спокойного солнечного ветра и усиленные на фронтах скоростных потоков, меняют энергию заряженных частиц.

Эффекты торможения или ускорения невелики и могут быть выявлены на низкоэнергичном участке спектра космических лучей. Подробно о вариациях космических лучей см. на странице, созданной С.И. Свертиловым.

10.3 Структура магнитосферы

Магнитосферой Земли назовем окружающее ее космическое пространство, на состояние которого влияет магнитное поле Земли. Структура магнитосферы определяется взаимодействием магнитного поля Земли с солнечным ветром.

Магнитное поле. На обращенной к Солнцу стороне поток заряженных частиц солнечного ветра встречает сопротивление магнитного поля Земли, в результате образуется две границы - плазменная граница, головная ударная волна и магнитопауза за которой начинается собственно магнитосфера. Эти две границы разделенны переходной областью.

Собственно магнитосферу принято делить на внутреннюю, где определяющим является влияние магнитного поля земного диполя и внешнюю, где магнитное поле задается преимущественно внешними источниками, токами, текущими по границам и внутри магнитосферы. В возмущенное время важную роль играет переходная область, где наблюдается динамическая конкуренция полей внутренних и внешних источников.

Структура магнитного поля наименее возмущена вблизи Земли. Здесь силовые линии имеют дипольный характер, плотность энергии магнитного поля намного выше плотности энергии захваченных частиц. Дальше от Земли, уже в максимуме внешнего пояса конфигурация значительно отличается от дипольной, силовые линии поджаты с дневной стороны и вытянуты на ночной. Переход от квазидипольной к хвостовой конфигурации в большинстве моделей магнитосферы имеет плавный характер, однако в реальных условиях, особенно в возмущенные периоды, существует резкая граница, для которой характерны быстрые движения в радиальном направлении и которая может быть неоднородна в азимутальном (поперек хвоста) направлении.

На дневной стороне важным структурным образованием является касп, или, точнее, два каспа, магнитные воронки в северном и южном полушарии, открытые для проникновения частиц солнечного ветра.

В хвостовой части к магнитопаузе примыкает мантия, затем идут доли хвоста, разделенные нейтральной плоскостью. Силовые линии магнитного поля, направленные в противоположные стороны вблизи нейтральной плоскости подходят близко друг к другу, создавая предпосылки для пересоединения силовых линий. Повидимому пересоединеение играет важную роль в динамике частиц в хвосте магнитосферы во время возмущений.

Плазма. Структуры и границы в магнитосфере определяются не только магнитным полем, но и популяциям плазмы и энергичных частиц. Ближе к Земле располагается облако плазмы, именуемое плазмосферой. Здесь частицы плазмы вращаются вместе с Землей, увлекаемые электрическим полем коротации. Граница плазмосферы нессиметрична - на вечерней стороне она отдаляется от Земли, образуя вечерний выступ или рог. Граница резко очерчена плазмопаузой - областью пониженной плотности плазмы. Дальше от Земли плотность плазмы снова растет, но это уже новое образование, плазменный слой, широкая плоская поверхность, простирающаяся далеко вдоль хвоста магнитосферы вплоть до орбиты Луны. Ближняя к Земле область плазменного слоя лежащая на замкнутых квазидипольных силовых линиях мангнитного поля и перекрывающаяся с областями захвата и квазизахвата энергичных частиц, называется центральным плазменным слоем. Его граница с хвостовой частью плазменного слоя проходит на расстоянии 7-20 Re в зависимости от уровня магнитной активности.

На восточной и западной границах плазменного слоя, примыкающих к границе магнитосферы, выделяют пограничный плазменный слой.

Радиационные пояса. Магнитосфера Земли является резервуаром энергичных частиц, электронов и ионов, преимущественно протонов. Частицы встречаются во всех частях магнитосферы, однако можно выделить области устойчивого захвата - внутренний и внешний радиационные пояса и область неустойчивого или квази-захвата.

Во внешней магнитосфере, в хвосте и в каспе наблюдаются транзиентные потоки энергичных частиц, отдельные всплески и фоновая радиация, часто повышенная по сравнению с фоном космических лучей. В отдельных событиях повышенный фон связан с приходом космических лучей солнечного или гелиосферного происхождения.

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Астрономия, авиация и космонавтика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы