Цифровые вычислительные устройства и микропроцессоры приборных комплексов

– Содержимое аккумулятора и регистра-расширителя R1 сдвигается вправо на один бит так, что младший бит множителя, выдвигаемый из регистра R1, помещается в триггер флага C.

– Если C = 1, то множимое добавляется к содержимому аккумулятора, в противном случае никаких операций не производится.

– Декрементируется счетчик циклов R3, и если его содержимое не равно нулю, то все действия повторя

ются.

– Перед выходом из подпрограммы формируется окончательный результат сдвигом частичного результата на один бит вправо:

MPL: MOV R3,#8 ; загрузка счетчика циклов

CLR A ; очистка аккумулятора

CLR C ; очистка признака переноса

SHIFT: RRC A ; сдвиг аккумулятора вправо

XCH A,R1 ; обмен аккумулятора и R1

RRC A ; сдвиг множителя с занесением

; выдвигаемого бита в C

XCH A,R1 ; обмен аккумулятора и R1

JNC RESULT ; если C = 1, то суммирование

ADD A,R2 ; прибавление множимого

RESULT: DJNZ R3,SHIFT ; декремент счетчика и проверка

; окончания операции (R3 = 0)

RRC A ; сдвиг аккумулятора

XCH A,R1 ; обмен

RRC A ; сдвиг содержимого R1

XCH A,R1 ; обмен

Пример 1.9. Умножить аккумулятор на число 2 в степени X, где X – число (не более 8), хранящееся в R2. Умножение на 2 заменяется арифметическим сдвигом влево аккумулятора и расширителя R1:

MOV R1,#0 ; сброс R1

CLR С ; сброс флага переноса

LOOP: RLC A ; арифметический сдвиг влево объединенного

XCH A,R1 ; 16-битного результата в

RLC A ; регистровой паре (R1) (A)

XCH A,R1 ;

DJNZ R2,LOOP ; цикл

3.4.2. Изучение команд манипуляции флажками и передачи управления

1) Изучить организацию стека микроконтроллера ВЕ48;

2) Рассмотреть систему команд манипуляции флажками, условных и безусловных переходов, вызова подпрограмм;

3) Ознакомиться с приведенными ниже примерами программ на языке ассемблера;

4) Произвести ввод, отладку и трансляцию в объектный код этих программ;

5) Выполнить программы по шагам с просмотром результатов выполнения в регистрах и оперативной памяти.

Пример 2.1. Определить четность числа единиц в аккумуляторе. После выполнения программы аккумулятор сохранит свое значение, флаг 0 будет установлен, если число единиц в аккумуляторе было нечетно. Флаг F0 входит в состав PSW и в данном примере специфицирован пользователем для выполнения функций флага паритета.

CLR F0 ; сброс F0

MOV R7,#8 ; число повторов

LOOP: RRC A ; пересылка бита A.0 в перенос

JNC NEXT ; пропустить, если бит равен 0

CPL F0 ; подсчет паритета

NEXT: DJNZ R7,LOOP ; повторить 8 раз

Пример 2.2. Передать управление по метке LL, если переключатель банка регистров (бит PSW.4) установлен:

JBSET: MOV A,PSW ; передача PSW в аккумулятор

JB4 LL ; переход, если A.4 = 1

LL: … ;

Пример 2.3. Осуществить переход из нулевого банка памяти программ к программе с именем ROUT, расположенной в первом банке памяти программ:

SEL MB1 ; установка флага MB

JMP ROUT ; переход к программе ROUT

Пример 2.4. Множественное ветвление программы. Допустим, что результатом работы некоторой программы является число X (в пределах от 0 до 15). Необходимо организовать передачу управления 16 различным программам с именами ROUT0–ROUTF в зависимости от вычисленного значения X:

ORG 0 ; задание начального адреса программы

ANL A,0F ; сброс старшей тетрады A

; во избежание ошибки перехода

JMPP @A ; обращение к таблице векторов переходов

; таблица векторов переходов

DB ROUT0 ; начальный адрес программы ROUT0

DB ROUT1 ; начальный адрес программы ROUT1

DB ROUTF ; начальный адрес программы ROUTF

Преобразование чисел из одной системы счисления в другую. Перевод шестнадцатеричных чисел в двоичную систему счисления достигается представлением цифр шестнадцатеричного числа четырехразрядными двоичными числами. Например,

A7B = 1010 0111 1011

A 7 B

Перевод в десятичную систему счисления. Так как перевести числа из двоичной системы в шестнадцатеричную и обратно нетрудно, то для простоты выкладок рассмотрим перевод чисел из шестнадцатеричной системы и обратно.

В качестве примера перевода числа из шестнадцатеричной системы в десятичную систему выберем число 9A5F:

9A5F16 = (9∙163 + 10∙162 + 5∙161 + 15∙160)=(((9∙16+10)∙16+5)∙16+15) = 3951910

9 A 5 F

Здесь путем группировки членов вычисление полиномов представлено в форме так называемой схемы Горнера, обеспечивающей минимальное число выполняемых операций умножения.

Покажем действия по переводу чисел из десятичной системы счисления в шестнадцатеричную на примере преобразования десятичного числа 3951910 в шестнадцатеричную систему счисления

39519 |16

39504 2469 |16

15 2464 154 |16

F 5 144 9

10

A

Отсюда 3951910 = 9A5F16. Таким образом, последовательно деля на 16 целую часть десятичного числа и образующиеся частные, получаем в последнем частном и остатках цифры всех разрядов шестнадцатеричного представления числа.

Пример 2.5. Преобразование кодов из одной системы счисления в другую. Преобразование кода из одной позиционной системы счисления в другую осуществляется делением исходного числа на основание новой системы счисления. При этом деление должно выполняться по правилам исходной системы счисления. Например, для преобразования двоичного числа в двоично-десятичное исходное двоичное число должно быть поделено на 10 (10102). Деление должно осуществляться по правилам двоичной арифметики.

Пусть требуется выполнить преобразование 8-битного двоичного числа в двоично-десятичное. Исходный двоичный код хранится в аккумуляторе. Результат преобразования состоит из 12 бит: младшие 4 бита – единицы, представляют собой остаток от деления исходного числа на 10; следующие 4 бита – десятки, представляют собой остаток от деления на 10 полученного частного; старшие 4 бита – сотни, являются частным от второго деления:

BBD: CALL DIV10 ; деление исходного кода на 10

MOV R7,A ; сохранение остатка в R7

MOV A,R1 ; загрузка в аккумулятор частного

CALL DIV10 ; деление частного на 10

SWAP A ; передача остатка в старшую тетраду A

ORL A,R7 ; передача R7 в младшую тетраду A

JMP EXIT ; выход из процедуры

; подпрограмма деления на 10

; исходный двоичный код в аккумуляторе

; результат: в R1 – частное, в аккумуляторе – остаток

DIV10: MOV R1,#0 ; сброс R1

SUB10: ADD A,#(NOT(10)+1) ; вычитание 10 из делимого

INC R1 ; инкремент частного

JC SUB10 ; цикл, если остаток >= 0

DEC R1 ; восстановление частного

ADD A,#10 ; восстановление остатка

RET ; возврат

EXIT: … ;

В результате выполнения процедуры в младшей тетраде R1 хранятся сотни, в аккумуляторе – десятки и единицы двоично-десятичного эквивалента исходного двоичного числа.

3.4.3. Изучение аппаратных и программных средств ввода/вывода информации микроконтроллера ВЕ48

1) Изучить организацию каналов ввода/вывода информации микроконтроллера ВЕ48, интерфейс расширения ввода/вывода;

Страница:  1  2  3  4  5 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы