Взаимозаменяемость продовольственных продуктов - масла животного и масла растительного. Их потребление
Оценка статистической значимости коэффициентов регрессии и коэффициента корреляции
Оценим статистическую значимость полученных коэффициентов регрессии а0 и а1, коэффициента корреляции rух с помощью t-критерия Стьюдента на уровне значимости d=0,05.
Эта проверка проводится по единой схеме, с помощью гипотез.
Выдвигается нулевая гипотеза Н0 о случайной природе полученного коэффи
циента, о незначимом его отличии от нуля, то есть гипотеза Н0 состоит в том, что коэффициент=0. Альтернативная ей гипотеза Н1 состоит в том, что  неслучайно, то есть полученный коэффициент статистически значим. Чтобы опровергнуть гипотезу Н0 и подтвердить гипотезу Н1 должно выполняться неравенство
неслучайно, то есть полученный коэффициент статистически значим. Чтобы опровергнуть гипотезу Н0 и подтвердить гипотезу Н1 должно выполняться неравенство  на уровне значимости
на уровне значимости  и с (n–2) степенями свободы, где n – количество наблюдений, уровень значимости – вероятность совершить ошибку, отвергнув гипотезу Н0, когда она верна.
и с (n–2) степенями свободы, где n – количество наблюдений, уровень значимости – вероятность совершить ошибку, отвергнув гипотезу Н0, когда она верна. 
Для а1: Н0: а1=0, Н1:  .
. 
Рассчитаем стандартную ошибку коэффициента регрессии а1 –  .
. 
Потребуется сделать промежуточные вычисления: подставляя фактические значения хi в уравнение регрессии найдем смоделированные значения  , затем вычислим разность между фактическими и смоделированными значениями, т.е. остатки
, затем вычислим разность между фактическими и смоделированными значениями, т.е. остатки  , затем возведём остатки в квадрат еi2 и просуммируем; результаты представлены в расчетной таблице. Теперь подставим необходимые данные в формулу для расчёта
, затем возведём остатки в квадрат еi2 и просуммируем; результаты представлены в расчетной таблице. Теперь подставим необходимые данные в формулу для расчёта  :
:  иt-статистики по модулю:
иt-статистики по модулю:  .
. 
Затем сравним наблюдаемое значение  с табличным значением t-критерия Стьюдента. Табличное значение по таблице распределения Стьюдента на уровне значимости d=0,05 с n–2=55-2=53 степенями свободы: tтабл=2,01. Наблюдаемое значение t-статистики превышает табличное значение t-критерия: 22 > 2,01, то есть выполнено неравенство
с табличным значением t-критерия Стьюдента. Табличное значение по таблице распределения Стьюдента на уровне значимости d=0,05 с n–2=55-2=53 степенями свободы: tтабл=2,01. Наблюдаемое значение t-статистики превышает табличное значение t-критерия: 22 > 2,01, то есть выполнено неравенство  , а значит, гипотеза Н0 о случайной природе полученного коэффициента отвергается и принимается альтернативная ей гипотеза Н1, свидетельствующая в 95% случаев о статистической значимости полученного коэффициента регрессии а1. Т.о., можно считать, что взаимозаменяемость товаров подтвердилась и статистически установлена.
, а значит, гипотеза Н0 о случайной природе полученного коэффициента отвергается и принимается альтернативная ей гипотеза Н1, свидетельствующая в 95% случаев о статистической значимости полученного коэффициента регрессии а1. Т.о., можно считать, что взаимозаменяемость товаров подтвердилась и статистически установлена. 
Для а0: Н0: а0=0, Н1:  .
. 
Рассчитаем стандартную ошибку коэффициента регрессии а0 –  . Все необходимые цифры уже имеются в расчетной таблице, подставим эти данные в формулу:
. Все необходимые цифры уже имеются в расчетной таблице, подставим эти данные в формулу:  , а затем рассчитаем t-статистику по модулю:
, а затем рассчитаем t-статистику по модулю:  .
. 
Сравнивая рассчитанное значение с табличным значением t-критерия Стьюдента на уровне значимости d=0,05 с n–2=55-2=53 степенями свободы: tтабл=2,01,где 2<ta0< 3 (tтабл > ta0) можно сделать вывод, что коэффициент регрессии а0 можно признать статистически значимым в 90% случаев.
Для rух: Н0: rух=0, Н1:  .
. 
Для этого рассчитаем стандартную ошибку коэффициента корреляции rух –  :
:  иt-статистику по модулю:
иt-статистику по модулю:  .
. 
Сравнивая рассчитанное значение с табличным значением t-критерия Стьюдента на уровне значимости d=0,05 с n–2=55-2=53 степенями свободы: tтабл=2,01, можно сделать вывод о статистической значимости полученного коэффициента корреляции rух в 95% случаев, предполагаемая взаимозаменяемость товаров подтвердилась.
Проверим правильность вычислений:  , действительно 22»22,7.
, действительно 22»22,7. 
Доверительные интервалы для параметров регрессионной модели a0 и a1
Доверительный интервал для a0 с надежностью g=1-d:  . Выбрав уровень значимости d=0,05, получаем надежность g=0,95. Все необходимые цифровые значения уже рассчитаны ранее, тогда
. Выбрав уровень значимости d=0,05, получаем надежность g=0,95. Все необходимые цифровые значения уже рассчитаны ранее, тогда  , откуда получаем (0,4312; 12,813).ыберемрительной вероятностью ров регрессионной модели
, откуда получаем (0,4312; 12,813).ыберемрительной вероятностью ров регрессионной модели 
Доверительный интервал для a1 с надежностью g=1-d:  . При выбранной надежности g=0,95:
. При выбранной надежности g=0,95:  , откуда (0,32; 0,384).
, откуда (0,32; 0,384). 
Таким образом, с надежностью 95% можно утверждать, что истинное значение параметра a0 будет заключено в пределах от 0,4312 до 12,813, а истинное значение параметра a1 - в границах от 0,32 до 0,384.
Следует отметить, что доверительные интервалы узкие, т.к. значения стандартных ошибок  и
и  малы. А это подтверждает, что другие факторы оказывают несущественное влияние на покупательскую способность товаров. Основным фактором является выбранный фактор Х – замена растительным маслом. Значит, точность модели будет вполне приемлемой.
малы. А это подтверждает, что другие факторы оказывают несущественное влияние на покупательскую способность товаров. Основным фактором является выбранный фактор Х – замена растительным маслом. Значит, точность модели будет вполне приемлемой. 
Оценка качества уравнения регрессии в целом
F-критерий Фишера
Выдвигается нулевая гипотеза Н0 о статистической незначимости уравнения регрессии. Альтернативная ей гипотеза Н1 о статистической значимости. Чтобы опровергнуть гипотезу Н0 и подтвердить гипотезу Н1 должно выполняться неравенство  .
. 
Рассчитаем наблюдаемое значение F-критерия (воспользуемся свойством для линейной парной регрессии):  .
. 
Табличное значение по таблице распределения Фишера на уровне значимости d=0,05 с k1=1 и k2=n–2=23-2=21 степенями свободы: Fтабл=4,03. Наблюдаемое значение F–критерия превышает табличное: 510,83 > 4,03, то есть выполнено неравенство  , а значит, гипотеза Н0 о случайной природе полученного уравнения регрессии отклоняется в пользу гипотезы Н1, свидетельствующей в 95% случаев о его статистической значимости и взаимозаменяемости товаров. Уравнение по данным выборки можно признать надежным и значимым, доказывающим наличие исследуемой зависимости.
, а значит, гипотеза Н0 о случайной природе полученного уравнения регрессии отклоняется в пользу гипотезы Н1, свидетельствующей в 95% случаев о его статистической значимости и взаимозаменяемости товаров. Уравнение по данным выборки можно признать надежным и значимым, доказывающим наличие исследуемой зависимости. 
Другие рефераты на тему «Экономико-математическое моделирование»:
- Построение и анализ функции спроса на товар
- Статистика процесса использования товаров населением
- Взаимозаменяемость продовольственных продуктов - масла животного и масла растительного. Их потребление
- Подходы к оценке рисковых инвестиций
- Расчет коэффициента эластичности и показателей корреляции и детерминации
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели

 Скачать реферат
 Скачать реферат