Электроснабжение нефтеперерабатывающего завода

Тепло в колонну подается через термосифонные рибойлеры подачей в них в качестве теплоносителя IV ЦО колонны после теплообменника.

С куба стабилизатора стабильный бензин выводится на блок гидроочистки. Вывод стабильного бензина из куба колонны осуществляется по уровню, значение которого является корректирующим для регулятора расхода стабильного бензина от насоса на блок гидроочистки.

Для

очистки бензина от серы предусмотрен блок гидроочистки бензина каталитического крекинга. В качестве катализатора используется высокоактивный алюмо–кобальт–молибденовый катализатор.

Процесс гидроочистки ведется в токе водорода высокой чистоты и парциального давления. Высокое парциальное давление водорода в реакторе увеличивает скорость реакции гидрообессеривания и уменьшает скорость дезактивации катализатора.

Бензин каталитического крекинга характеризуется значительным содержанием сернистых соединений – сульфидов и тиофенов и непредельных углеводородов – олефинов и диенов. Наблюдается также качественное присутствие меркаптанов. Основная часть непредельных углеводородов концентрируется в легких фракциях крекинга-бензина, выкипающих при температурах до 120 оС, в то время как содержание сернистых соединений резко возрастает с утяжелением фракционного состава.

Сущность процесса стабилизации бензина заключается в разделении углеводородных газов ректификацией на фракции в результате многократного двухстороннего массообмена при кипении и конденсации между противоточно движущимися парами и жидкостью. При ректификации происходит диффузия высококипящего компонента из пара в жидкость и низкокипящего из жидкости в пар в результате неравновесной разности концентраций между контактирующими потоками.

Очистка циркулирующего водородсодержащего газа (ЦВСГ), производимая раствором моноэтаноламина (МЭА), основана на процессе химического поглощения сероводорода (абсорбция с протеканием химических реакций).

Образовавшиеся соединения при нормальных условиях имеют заметное давление насыщенных паров. При повышении температуры давление насыщенных паров этих соединений быстро растет. С учетом того, что реакция поглощения сероводорода раствором МЭА экзотермическая (на 1 кг поглощенного сероводорода выделяется приблизительно 300 ккал тепла), повышение температуры насыщенного раствора МЭА сдвинет равновесие в сторону обратных реакций, что позволяет десорбировать сероводород из раствора МЭА.

Сырье – стабильный бензин каталитического крекинга, поступает на гидроочистку в межтрубное пространство теплообменника, предварительно смешиваясь с водородсодержащим газом (ВСГ), поступающим от циркуляционного компрессора

Смесь сырья и ВСГ проходит последовательно межтрубное пространство теплообменников, где за счет тепла смеси продуктов реакции гидроочистки и ВСГ нагревается до температуры 200-300оС.

После, газосырьевая смесь двумя потоками поступает в печь, где нагревается до температуры 250-350оС за счет сжигания топливного газа в горелках печи.

Из печи, нагретая до температуры 250-350оС, газосырьевая смесь направляется последовательно в реакторы гидроочистки, где на алюмокобальмолебденовом катализаторе протекает реакция гидрогинолиза серосодержащих соединений и гидрирование непредельных углеводородов, содержащихся в сырьевом потоке.

В реакторе идут реакции глубокого гидрообессеривания сульфидной и тиофеновой серы, насыщения углеводородов, превращения сернистых соединений и насыщения ароматических углеводородов. Реакции гидрообессеривания экзотермические (проходят с выделением тепла), что может привести к неуправляемому повышению температуры в реакторе. Далее газопродуктовая смесь с температурой 120-260оС и давлением 2,6 МПа поступает на охлаждение в аппараты воздушного охлаждения и далее в водяной холодильник .

Газопродуктовая смесь после холодильника с температурой 40-50 оС поступает в сепаратор высокого давления. В сепараторе происходит разделение газопродуктовой смеси на жидкие углеводороды, ВСГ и отстой кислой воды.

Кислая вода из отстойника выводится в емкость.

Водородсодержащий газ (ВСГ), отделенный от нестабильного гидрогенизата, поступает под нижнюю (20-ю) тарелку абсорбера К‑502, где происходит поглощение раствором МЭА сероводорода, содержащегося в ВСГ.

ВСГ проходит через абсорбер снизу вверх противотоком подаваемому 15 %-ному водному раствору моноэтаноламина (МЭА).

Регенерированный раствор МЭА насосом подается в емкость. Из емкости раствор МЭА с расходом 2,8 м3/ч подается насосом на верхнюю (1-ю) тарелку . Очищенный от сероводорода ВСГ с верха абсорбера поступает в сепаратор , где происходит сепарация из ВСГ унесенных капель МЭА, который выводится в емкость .

Далее ВСГ поступает в сепаратор, где происходит отделение из газа жидкой фазы. После сепаратора ВСГ поступает в буферные емкости всасывания 1-го и 2-го цилиндра компрессора ПК-501/1,2.

После сжатия газа в 1-ом и 2-ом цилиндрах до давления не более 38,0 кгс/см2, сжатый газ после нагнетательных клапанов 1-го и 2-го цилиндров компрессора через буферные емкости нагнетания с температурой не более 75 ºС подается на узел гидроочистки бензина.

Свежий водород, поступает с НПЗ в емкость и далее на всас компрессора.

Нестабильный бензин снизу сепаратора поступает в межтрубное пространство теплообменников, где нагревается за счет тепла, приносимого стабильным бензином из куба колонны.

В колонне на 24 трапециевидно-клапанных тарелках (6 шт. – однопоточные, 18 шт. – двухпоточные) происходит процесс стабилизации бензина. Тепло, необходимое для процесса ректификации, в колонну подводится стабильным бензином из печи.

Легкие газы и пары бензина с верха колонны с температурой 100-125 С поступают в воздушный холодильник, в котором происходит охлаждение смеси и частичная конденсация бензиновых фракций.

Из основной кубовой части колонны стабильный бензин подается на циркуляцию для подогрева через печь, а из кармана после охлаждения в выводится в цех .

Циркуляция стабильного бензина осуществляется насосом

Стабильный бензин насосом двумя параллельными потоками поступает в печь, где последовательно проходит конвекционную и радиантную камеры и нагревается до температуры 200-235 °С за счет тепла, получаемого от сгорания топливного газа в печи.

Топливный газ с расходом н/б 500 нм3/ч поступает из сепаратора

Для регулирования разрежения в топке печи и работы горелок предусмотрена шиберная заслонка с электроприводом на выходе дымовых газов после конвективной зоны печи в атмосферу.

Стабильный бензин с куба колонны проходит трубное пространство, где охлаждается нестабильным бензином, поступающим в колонну, до температуры 70‑110 °С, в воздушном холодильнике и в водяном холодильнике до температуры 30‑50 °С. Стабильный бензин отправляется на склад.

2 Выбор напряжения электрической сети

Для повышения эффективности системы электроснабжения и экономии электроэнергии при ее проектировании следует стремиться к сокращению числа ступеней трансформации, повышению напряжения питающей сети, внедрению подстанций без выключателей с минимальным количеством оборудования, применению магистральных линий и токопроводов. Если при взаимном расположении производств и потребляемой ими мощности оптимальное число понизительных подстанций 35 .220/6 . 10 кВ оказывается больше единицы, то по территории предприятия следует проложить воздушную линию (ВЛ) или кабельную вставку с ответвлениями к подстанциям глубокого ввода (ПГВ), которые располагают в центрах нагрузок групп цехов, территориально обособленных на данном предприятии. При этом распределительные устройства напряжением 6 .10 кВ ПГВ используют в качестве распределительных пунктов (РП) цехов.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы