Изучение вопросов биотехнологии в курсе химии средней школы

1) Трансформация растительных протопластов осуществляется благодаря комбинации методик кальциевой преципитации ДНК и слияния протопластов. Для трансформации может быть использован практически любой ДНК-вектор.

2) Культуру протопластов на начальной стадии её роста заражают агробактериями, которые используют в качестве векторов.

3) Микроинъекции ДНК. Аналогичен методу микроинъекций животн

ых клеток. Этот метод можно рассматривать как наиболее универсальный. Эффективность трансформации растительных клеток – 10–20% независимо от типа вектора. Трансформация не видоспецифична, возможен перенос генов в любое растение.

4) Электропорация. Метод основан на повышении проницаемости биомембран за счет действия импульсов высокого напряжения. В результате молекулы ДНК проникают в клетки через поры в клеточной мембране.

5) Упаковка в липосомы. Это один из методов, позволяющих защитить экзогенный генетический материал от разрушения нуклеазами растительной клетки. Липосомы – сферические тельца, оболочки которых образованы фосфолипидами.

6) Метод биологической баллистики[6]. Это один из самых эффективных методов трансформации однодольных растений. Исходный материал для трансформации – суспензионная культура, каллусная ткань или 4–5-дневные культивируемые незрелые зародыши однодольных. Метод основан на напылении ДНК-вектора на мельчайшие частички вольфрама, которыми затем бомбардируют клетки. Бомбардировка осуществляется с помощью биолистической пушки за счет перепада давления. Часть клеток гибнет, а выжившие клетки трансформируются, затем их культивируют и используют для регенерации растений.

Решение проблемы создания новых форм растений подразумевает в первую очередь повышение качества синтезируемых растением продуктов, которые определяют его питательную и техническую ценность. В основном это касается запасных белков.

Начиная с 1970 г. стали появляться серьезные работы по изучению генов азотфиксации и их переносу в клетки Klebsiella pneumoniae и E.coli. Конструирование плазмид, несущих nif-гены, позволяет передавать способность к фиксации азота организмам, не обладающим этим свойством. Среди бактерий, кроме E.coli, такой перенос осуществлен для бактерий Salmonella typhimurium, Erwinia herbicola и других. Однако подобные манипуляции могут приводить к нежелательным эффектам. Так перенос генов в штамм Erwinia (бактерии, вызывающие гниение растений) может усилить его патогенное действие.

В настоящее время внимание ученых привлекают проблемы введения генов азотфиксации в клетки растений; создания ризоценозов между небобовыми растениями (особенно злаками) и азотфиксирующими организмами. Наиболее интересна первая проблема – введение nif-генов в клетки растений. Однако её решение сопряжено с рядом трудностей. Основная – разрушение нитрогеназы под воздействием кислорода. У азотфиксирующих микроорганизмов существует ряд приспособлений, защищающих бактерии от свободного кислорода. Таким образом, введение только nif-генов в какую-то растительную клетку не решает проблемы. Кроме того, сама клетка, в которую переносят гены азотфиксации, может быть не приспособлена к синтезу и расходованию большого количества энергии, которое требуется для фиксации азота. Следовательно, более перспективно повышение эффективности фиксации азота в уже существующих природных системах за счет воздействия на гены, контролирующие этот процесс, а также увеличение мощности корневой системы бобовых растений и создание новых азотфиксирующих систем с помощью методов клеточной инженерии.

Наибольший урон растениям приносят грибные, бактериальные и вирусные патогенны. В растении существуют защитные механизмы, которые в большей или меньшей степени (в зависимости от устойчивости растений) начинают действовать в ответ на проникновение фитопатогенов в клетку. Во-первых, начинается синтез соединений, вызывающих гибель патогенов. Примером могут служить специфические белки PRP (pathogen related proteins). Из них наиболее изучены ферменты хитиназы и β-1,3 – глюконазы, которые угнетают рост грибов и некоторых видов бактерий, разрушая их клеточные стенки. Во-вторых, могут создаваться структурные барьеры, препятствующие распространению инфекции. Это достигается благодаря лигнификации клеточных стенок.

Так, гены хитиназы и глюконазы кодируются одиночными генами. Благодаря этому были получены трансгенные растения табака и турнепса, в состав генома которых ввели ген хитиназы. Лабораторные и полевые испытания выявили большую устойчивость трансгенных растений. В растения томатов был введен ген защитных пептидов редьки (дефензинов) rs, отвечающих за устойчивость к фитопатогенным грибам.

Другой подход к получению трансгенных растений, устойчивых к вирусной инфекции, состоит во введении в геном исходных растений гена оболочки вируса. Это приводит к ингибированию размножения вируса и снижению инфицированности. Благодаря такому подходу был получен стойкий антивирусный эффект у растений табака, трансформированных геном оболочки вируса табачной мозаики (ВТМ).

Создание трансгенных растений, устойчивых к насекомым, с помощью методов генной инженерии стало возможным после того, как было обнаружено, что бактерии Bacillus thurengiensis синтезируют специфический белок – прототоксин, высокотоксичный для насекомых. Попадая в кишечник насекомого, этот белок расщепляется, образуя активную форму токсина. В результате насекомое погибает. Ген, ответственный за экспрессию прототоксина, удалось обнаружить, выделить из генома B. thurengiensis и с помощью бинарного вектора ввести в геном растений табака.

Аналогичным образом растения томата были трансформированы генами другого инсектицидного белка – эндотоксина. В итоге были получены первые трансгенные растения, которые не повреждали насекомые (рис. 9).

Божьи коровки, которые питались тлями, жившими на ГМ – картофеле, становились бесплодными и т.д. Некоторые авторы связывают данные явления с «горизонтальными» потоками генетической информации[19].

Генную терапию на современном этапе можно определить как лечение наследственных, мультифакторных и ненаследственных (инфекционных) заболеваний путем введения генов в клетки пациентов с целью направленного изменения генных дефектов или придания клеткам новых функций[2]. Первые клинические испытания методов генной терапии были предприняты 22 мая 1989 года с целью генетического маркирования опухоль-инфильтрующих лимфоцитов в случае прогрессирующей меланомы. Первым моногенным наследственным заболеванием, в отношении которого были применены методы генной терапии, оказался наследственный иммунодефицит, обусловленный мутацией в гене аденозиндезаминазы (ADA). 14 сентября 1990 года в Бетесде (США) четырехлетней девочке, страдающей этим достаточно редким заболеванием (1: 100 000), были пересажены её собственные лимфоциты, предварительно трансформированные вне организма (ex vivo) геном ADA (ген ADA + ген neo + ретровирусный вектор). Лечебный эффект наблюдался в течение нескольких месяцев, после чего процедура была повторена с интервалом 3–5 месяцев. В результате лечения состояние пациентки настолько улучшилось, что она смогла вести нормальный образ жизни и не бояться случайных инфекций.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы