Особенности строения нервной системы

Субарахноидальное кровоизлияние ведет к значительному увеличению уровня S‑100 в СМЖ. Следует отметить, что при этом концентрация белка в плазме остается низкой. Концентрация S‑100 значительно повышается в плазме у пациентов, оперированных в условиях искусственного кровообращения. Пик концентрации приходится на окончание экстракорпоральной циркуляции и затем уменьшается в неосложненн

ых случаях. Замедление снижения концентрации S‑100 у пациента в послеоперационный период говорит о наличии осложнений, о повреждении клеток мозга. Раннее определение и контроль уровня S‑100, а также одновременные исследования S‑100 и NSE позволяют выявить и подтвердить наличие повреждений мозга на ранней стадии, когда возможно успешное лечение. Тест S‑100 также можно использовать для прогноза неврологических осложнений при обследовании пациентов с остановкой сердца.

Повышение белка S‑100 в сыворотке крови и СМЖ при нарушениях мозгового кровообращения обусловлено активацией микроглии. Было показано, что в ранней фазе церебрального инфаркта микроглиальные клетки в периинфарктной зоне экспрессируют белки семейства S‑100 и активно пролиферируют, причем белки экспрессируются не более трех дней после инфаркта. Это говорит о том, что активация постоянной популяции микроглии является ранним ответом мозговой ткани на ишемию и может быть использована как ранний маркер повреждения.

Свободные аминокислоты нервной системы

Аминокислоты являются для нервной ткани источником синтеза большого числа биологически важных соединений, таких как специфические белки, пептиды, нейромедиаторы, гормоны, витамины, биологически активные амины и др. Существенна также их энергетическая значимость, поскольку аминокислоты глутаминовой группы связаны с циклом трикарбоновых кислот.

Состав пула свободных аминокислот при нормальных физиологических условиях достаточно стабилен и характерен для мозга. Аминокислотный фонд мозга человека составляет в среднем 34 мкмоль на 1 г ткани, что превышает их содержание, как в плазме крови, так и в спинномозговой жидкости. Высокая концентрация – 75% фонда всех свободных аминокислот – приходится на дикарбоновые кислоты и их производные: глутаминовую кислоту, глутамин, аспарагиновую, N‑ацетиласпарагиновую и γ-аминомасляную (ГАМК) кислоты, причем ГАМК и N‑ацетиласпарагиновая кислоты локализованы почти исключительно в нервной ткани [2].

Постоянство качественного и количественного состава аминокислот в метаболических фондах мозга обеспечивается такими взаимосвязанными процессами, как поступление аминокислот из циркулирующей крови, отток их из мозга в кровь и участие в реакциях внутриклеточного метаболизма. В организме все эти процессы сбалансированы слаженным функционированием гомеостатических механизмов гематоэнцефалического барьера и мембранным транспортом аминокислот [3].

Системы активного транспорта аминокислот в мозг и из него энергозависимы. Изучение конкурентных отношений в транспорте аминокислот выявило наличие восьми типов транспортных систем, которые существуют для аминокислот с родственной структурой и зависят от ионного заряда и размеров их молекул.

Для мембранного транспорта аминокислот характерен ряд особенностей:

- перенос аминокислот часто происходит против высоких концентрационных градиентов;

- этот процесс энергозависим:

- на него влияют температура и рН среды;

- он ингибируется анаэробным состоянием клеток;

- перенос аминокислот связан с активным мембранным транспортом ионов, например он Na+-зависим;

- обнаружено конкурентное торможение мембранного транспорта одних аминокислот другими [3, 6].

Особенно велика специфичность и мощность транспортных систем для аминокислот, выполняющих роль медиаторов (глицин, ГАМК, таурин, глутаминовая кислота и др.). Эти системы не только обеспечивают пластические и энергетические нужды клетки, но и служат также для специфического быстрого снижения концентрации тормозных нейромедиаторов (глицин, ГАМК) в зоне синаптической щели.

Понятие о функциональном континууме

Речь идет о химических соединениях пептидной природы, выполняющих в организме роль регуляторов разнообразных физиологических функций. Каких функций? Они логично и последовательно связаны между собой. Первая – организация коммуникации между разными клетками посредством специализированного химического сигнала. Вторая – обеспечение «настроя» клетки, которая реагирует на воздействия того или иного рода. Это так называемая модуляция функции нервной или другой клетки организма. Третья – участие в реализации отдельной физиологической реакции или сложного акта.

Сегодня мы можем говорить о классе универсальных химических регуляторов, значимость которых простирается от влияния на функции отдельных групп клеток до управления работой целых систем и органов, включая сложные акты поведения. Так, в суммарной сводке, где выбраны сведения только для семи нейропептидов с наибольшим «индексом цитируемости» в современной научной литературе, видно, что различные по своему химическому строению вещества связаны между собой множественными функциональными отношениями: как регуляторы, они причастны к большому спектру различных физиологических проявлений и как следствие – к заболеваниям различной природы и тяжести.

Попытаемся показать причины постулируемой «универсальности» нейропептидов, которые находятся сегодня в центре внимания широкого круга специалистов – от химиков и зоологов до клиницистов различного профиля.

Второй постулат: пептиды построены как комбинации аминокислот – основных «кирпичиков» биологического мира.

Начнем с базовых определений биологии. Их три: Структура. Энергитическое обеспечение. Регуляция.

В природе существуют такие структуры, которые оказались на редкость удачными в организации систем любой сложности. Одна из них – аминокислота. Это минимально сложное органическое соединение, одновременно и кислота, и основание, потому что в него с двух концов вмонтированы амидная и карбоксильная группы. Они помогают аминокислотам соединяться друг с другом, образуя относительно прочные и в то же время лабильные структуры. Известно около 150 аминокислот. Живая природа использует только 20 из них. Однако представьте, какое количество комбинаций можно сделать лишь из 20 исходных единиц! Из них созданы все белки, которые составляют основу любого организма – структурные, каталитические (ферменты), регуляторные. В результате серии последовательных химических реакций, осуществляемых с помощью специальных ферментов (пептидаз), в клетках образуются олигопептиды, которые обладают высокой биологической активностью и которые были классифицированы как регуляторы разнообразных физиологических процессов.

Таких физиологически значимых пептидов было открыто несколько сотен. Но основной «костяк» – не более 40–50, остальные – их комбинации, дополнения. Как правило, регуляторные пептиды – это молекулы с различным набором аминокислот: большинство из них – до 30, больше не надо. Есть какой-то энтропийный уровень, оптимальный для выполнения регуляторной миссии. Однако все более углубленное исследование соотношения структуры и функции показывает, что части целой пептидной молекулы, ее фрагменты, также могут обладать физиологической активностью, подчас еще большей или качественно инвертированной.

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Биология и естествознание»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы