Флуометрия в анализе объектов окружающей среды

В большинстве случаев увеличение концентрации также приводит к тушению свечения. При этом концентрационное тушение обычно начинает проявляться лишь при достижении некоторой пороговой концентрации, величина которой характерна для исследуемого вещества. В более разведенных растворах выход люминесценции не зависит от концентрации. Это обстоятельство может быть использовано в люминесцентном анализе

при подборе оптимальных условий его проведения.

Концентрационное тушение имеет двоякую природу. С одной стороны, при увеличении концентрации могут образовываться ассоциированные молекулы, не обладающие люминесцентной способностью, но поглощающие энергию возбуждения. С другой стороны, между возбужденными и невозбужденными молекулами может осуществляться индукционный перенос, или, как говорят, миграция энергии возбуждения. Такой перенос энергии возбуждения прежде всего на нелюминесцентные ассоциаты приводит к развитию концентрационного тушения.

Известны и другие виды тушения (тушение растворителем, тушение электролитами, тушение при диссоциации и ионизации молекул и т. д.). При проведении люминесцентного анализа интенсивность свечения играет очень большую роль. Поэтому учет тушения, изменяющего интенсивность люминесценции и затрудняющего анализ, является крайне важным.

Закон затухания люминесценции.

Закон затухания свечения после прекращения возбуждения может быть различным у разных веществ, что часто позволяет по нему определять природу и кинетику свечения; вместе с тем он может служить и аналитической характеристикой. Закон затухания свечения растворов и молекулярных кристаллов обычно достаточно хорошо выражается экспоненциальной зависимостью

(4).

где I — интенсивность свечения в момент времени t; I0 — интенсивность свечения в момент прекращения возбуждения; t — средняя длительность возбужденного состояния (время, в течение которого интенсивность свечения уменьшается в е раз, т. е. в 2,7 раза). В других случаях затухание свечения может происходить по более сложному закону. Так, например, затухание свечения кристаллофосфоров хорошо описывается эмпирической формулой

(5)

где A, b, a — постоянные, причем обычно a<2.

1.3 Длительность возбужденного состояния молекул

После прекращения возбуждения свечение не исчезает мгновенно, а продолжается определенный промежуток времени. Длительность возбужденного состояния у разных соединений может существенно различаться. Она характерна для каждого вещества и является его важной оптической характеристикой. Так, для растворов обычно t~10-8—10-9 сек. Затухание свечения кристаллофосфоров протекает по сложным законам и может продолжаться секунды, минуты и даже часы.

Таким образом, у жидких растворов t очень невелико и их люминесценция затухает практически мгновенно. Такие свечения часто называют флуоресценцией. При введении тех же веществ в очень вязкие среды (в желатину, сахарные леденцы и т. д.), а также при замораживании растворов возникает длительное свечение, продолжающееся доли секунды и даже целые секунды. Свечение такого вида называют замедленной флуоресценцией, или фосфоресценцией. Известны два вида замедленной флуоресценции: при одном спектр свечения совпадает со спектром флуоресценции (a-процесс), при втором наблюдается резко отличный спектр свечения, сдвинутый в сторону длинных волн (b-процесс).

Замедленная флуоресценция обусловлена попаданием возбужденных молекул на энергетические уровни, непосредственный переход с которых в невозбужденное состояние не разрешен. Эти уровни называются метастабильными; молекула может их покинуть лишь под влиянием внешних воздействий (например, при нагревании). Возбужденные молекулы пребывают на метастабильных уровнях значительное время, вызывая увеличение длительности послесвечения.

При сложном законе затухания (например, (5)) понятие средней длительности возбужденного состояния t уже неприменимо. В этом случае для характеристики длительности послесвечения обычно принимают время, в течение которого интенсивность свечения исследуемого образца уменьшается в определенное число раз (в 100—1000 раз).

1.4 Кривые термического высвечивания

У многих веществ (кристаллофосфоров, минералов, кварца и др.), предварительно возбужденных ультрафиолетовой, рентгеновской или радиоактивной радиацией, при нагревании возникает свечение, получившее название термолюминесценции. Оно наблюдается при температурах, значительно меньших тех, при которых появляется видимое температурное излучение.

Термолюминесценция имеет следующее происхождение. Под действием возбуждающей радиации электроны отрываются от ионов облучаемого вещества; часть их непосредственно рекомбинирует с ионизованными центрами, что приводит к возникновению кратковременного свечения кристаллофосфоров; другая часть электронов задерживается вблизи мест нарушения периодичности кристаллической решетки — на уровнях локализации. Освобождение электронов с мест локализации происходит за счет тепловой энергии. Их последующая рекомбинация с ионизованными центрами вызывает длительное свечение кристаллофосфоров.

Уровни локализации могут иметь различную энергетическую глубину, т. е. могут удерживать электроны с различной силой. Мелкие уровни освобождаются уже при температуре жидкого азота, глубокие — при +300, +400°С. При постепенном нагревании предварительно возбужденного фосфора последовательно освобождаются уровни разной глубины, и интенсивность термолюминесценции то увеличивается, то уменьшается. Кривые, характеризующие зависимость яркости свечения фосфора от температуры, получили название кривых термического высвечивания. Они являются важной характеристикой кристаллофосфоров и могут быть использованы для аналитических целей.

1.5 Основные закономерности свечения, используемые в люминесцентном анализе

Закон независимости спектра люминесценции от длины волны возбуждающего света.

При возбуждении свечения различными длинами волн молекулы вещества, поглощая кванты разной величины, попадают на различные колебательные уровни возбужденного электронного состояния. Поэтому можно ожидать, что спектр люминесценции будет зависеть от длины волны возбуждающего света. Однако оказалось, что каждое вещество в конденсированном состоянии имеет совершенно определенный спектр люминесценции, который не чувствителен к изменению длины волны возбуждающего света.

Это объясняется тем, что молекулы, перешедшие в результате возбуждения на различные колебательные уровни возбужденного состояния (рис. 1), успевают за время, много меньшее, чем средняя длительность возбужденного состояния t, растратить часть колебательной энергии и образовать систему возбужденных молекул, обладающих равновесным распределением колебательной энергии, определяемым температурой. Из этих вполне определенных для данной температуры состояний и происходят переходы молекул в невозбужденное состояние, сопровождающиеся излучением. Поэтому на опыте всегда наблюдается один и гот же спектр люминесценции, не зависящий от длины волны возбуждающего света.

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Экология и охрана природы»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы