Получение арсенида галлия

Зонная плавка проводится для дополнительной очистки и получения монокристалла. Она осуществляется в запаянной ампуле или под слоем флюса, например В2О3.

Загрузку, состоящую из затравочного кристалла определенной ориентации, поликристаллического арсенида галлия и набольшего количества металлического мышьяка, помещают в лодочку. Обычно кварцевые лодочки предварительно обрабатывают, покрывая у

глеродом и затем обжигая при 1300°С в течении 2ч.

Рис1 - 2. Схема установки для бестигельной зонной плавки GaAs под слоем В2О3. 1-кварцевая ампула; 2 индукционный нагрев.

Рис 1 - 3. Схема установки для бестигельной зонной плавки GaAs. 1-кварцевая ампула; 2 - держатель стержня; 3 - стержень из GaAs; 4 - кварцевое окно; 5 - индукционный нагрев; 6 - печь для дополнительного нагрева стенок аппарата; 7 - термопара.

Рис 1 - 4. Схема установки для вытягивания кристаллов GaAs по методу Чохральского. 1 - запаянная кварцевая ампула; 2 - магниты; 3 - сплав с высоким значением точки Кюри; 4 - печь для дополнительного нагрева; 5 - индукционный нагрев; 6 - расплавленная зона; 7 - графитовый тигель; 8 - затравка; 9 - держатель затравки.

Лодочку с загрузкой помещают в кварцевую ампулу, которую запаивают под вакуумом. Нагрев системы осуществляется с помощью трех печей: печи для расплавления арсенида галлия и двух печей для управления температурными градиентами: температура одной 800°С, а другой 600°С. Скорость прохода зоны изменяется в пределах 0,5 - 5см/ч.

Схема установки для зонной плавки арсенида галлия под слоем флюса В2О3 представлена на рис. 1 - 2.

Флюс В2О3 плавится при температуре 450°С кипит, при температуре свыше 1500°С; в расплавленном состоянии он представляет собой вязкую жидкость, которая, полностью покрывая поверхность расплава, подавляет процесс испарения мышьяка. Относительно загрязнения расплава примесями, содержащимися в окиси бора, конкретных данных нет. К недостаткам окиси бора следует отнести гигроскопичность и способность взаимодействовать с кварцем.

При зонной плавке арсенида галлия при достижении концентрации носителей заряда 1016см-3 дальнейшая очистка этим методом не дает эффекта.

Схема процесса бестигельной зонной плавки в запаянной ампуле показана на рис. 1-3. Бестигельная зонная плавка не имеет особых преимуществ по сравнению с другими методами. Трудности, связанные с герметизацией слитка GaAs в кварцевой ампуле и неизбежностью его испарения, делают процесс бестигельной зонной плавки мало пригодным для практического использования. Слиток арсенида галлия, полученный по методу бестигельной зонной плавки, после нескольких проходов имеет высокое удельное сопротивление (порядка Мом*см) в начальной и низкое удельное сопротивление в остальной части кристалла. Подвижность носителей в арсениде галлия с низким удельным сопротивлением 5500см2 / (в*сек).

Предполагается, что высокое сопротивление в арсениде галлия в обоих методах зонной плавки получается в результате присутствия примеси с энергетическим уровнем, близким к центру запрещенной зоны, действующей как ловушка.

Метод Чохральского

Метод Чохральского - метод выращивания кристаллов путём вытягивания их вверх от свободной поверхности большого объёма расплава с инициацией начала кристаллизации путём приведения затравочного кристалла (или нескольких кристаллов) заданной структуры и кристаллографической ориентации в контакт со свободной поверхностью расплава.

Используются два варианта вытягивания кристаллов по методу Чохральского: в запаянной ампуле, где создается требуемое давление паров мышьяка, и под слоем флюса, например В2О3.

В первом варианте основной технологической трудностью является предотвращение попадания кремния из кварцевого тигля в расплав. Для предотвращения этого применяют тигли из нитрида алюминия, благодаря чему между расплавом и кварцевой трубкой нет прямого контакта. Другой значительной трудностью применения метода Чохральского является перемещение и вращения слитка (рис. 1-4). Одно из возможных решений этой проблемы заключается в использовании магнитного поля.

При выращивании кристалла температура самого холодного участка ампулы поддерживалась равной 615°С, скорость вращения затравки составляла 17 об/мин, скорость вытягивания - 45 - 50 мм/ч. Длина выращенных кристаллов 20см, диаметр 20мм.

Распределение некоторых примесей в арсениде галлия, выращенном из расплава, зависит от концентрации примеси, кристаллографической ориентации и скорости роста. Радиальный температурный градиент оказывает существенное влияние на совершенство структуры слитка арсенида галлия, выращенного по методу Чохральского, увеличивая количество дислокаций.

Полученные методом Чохральского слитки имели подвижность носителей при комнатной температуре выше 7000 см2/ (в*сек). Подвижность в некоторых образцах выше 8000см2/ (в*сек), причем иногда она достигала 8500см2 (в*сек) при комнатной температуре. Концентрация носителей во всех образцах находилась в пределах (4÷6) *1015см-3.

Эпитаксиальные пленки арсенида галлия

Эпитаксия - это ориентированное нарастание одного кристалла на другой.

Выращивание монокристаллических эпитаксиальных пленок арсенида галлия, обладающих хорошими электрофизическими свойствами, производят в настоящее время почти исключительно путем реакции переноса в протоке. Перенос осуществляется галогенами при температурах 650 - 950° С. Следует отметить, что в пленках, полученных методом химических транспортных реакций, концентрация носителей на порядок ниже, чем в кристаллах, полученных из расплавов, а подвижность при комнатной температуре достигает 9000 см2/ (в⋅сек) (против 5000-6000, наблюдаемых в кристаллах); однородность пленок также превосходит однородность кристаллов. Это, по-видимому, связано с малой и равномерной скоростью роста пленок, а также с уменьшением загрязнения исходных материалов благодаря более низким температурам проведения процессов.

Многочисленные исследования посвящены процессам переноса предварительно синтезированного арсенида галлия иодом как в замкнутых ампулах, так и в проточных системах. Однако за последние годы установлено, что наилучшие результаты достигают при использовании в качестве реагента НСl, а в качестве газа носителя - водорода. Выбор HCl в качестве переносчика обусловлен тем, что он не конденсируется на холодных частях установки, как это имеет место для йода, его подачу в реакционную камеру можно точно дозировать и его можно очистить от следов влаги. Следует отметить, что промышленный НСl совершенно не приемлем, и наилучших результатов можно достичь, используя HСl, синтезированный из чистого Cl2 (получаемого, например, при диссоциации CuCl2) и чистого водорода. Применяемый водород следует очищать диффузией через палладий.

В качестве исходных материалов, подлежащих переносу, можно использовать следующие системы: а) кристаллы арсенида галлия; б) GaCl3+Ga+As; в) Ga+AsCl3.

Выбор исходных материалов определяется в первую очередь достижимой степенью чистоты тех или иных элементов или соединений. С этой точки зрения арсенид галлия, синтезированный методом сплавления компонентов и направленной кристаллизацией, не является вполне удовлетворительным.

Страница:  1  2  3  4 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы