Досмотровая рентгеновская техника

В 1895 году немецкий физик В.Рентген открыл новый, не известный ранее вид электромагнитного излучения, которое в честь его первооткрывателя было названо рентгеновским. Было установлено, что это излучение обладает целым рядом удивительных свойств. Во-первых, невидимое для человеческого глаза рентгеновское излучение способно проникать сквозь непрозрачные тела и предметы. Во-вторых, оно способно п

оглощаться веществами тем интенсивнее, чем больше их атомный номер в периодической системе Менделеева. В-третьих, рентгеновское излучение вызывает свечение некоторых химических веществ и соединений. В-четвёртых, рентгеновские лучи обладают линейным характером распространения. Эти свойства рентгеновских лучей и используются для получения информации о внутреннем содержании и строении "просвечиваемых" ими объектов без их вскрытия.

Рентгеновские лучи в "табеле о рангах"- шкале электромагнитных волн, - имея диапазон длин волн от 0,06 до 20 ангстрем (IA=10-10 м), занимает место между ультрафиолетовым излучением и гамма-лучами и характеризуется энергией квантов от единиц килоэлектронвольт до сотен мегаэлектронвольт. Рентгеновское излучение образуется двумя путями. Первый - в результате торможения быстро движущихся электронов в веществе, так называемое "тормозное" излучение, второй – в результате изменения энергетического состояния атомов вещества, т.н. "характеристическое" излучение. Физику явлений можно показать на примере работы рентгеновской трубки, как специального электровакуумного высоковольтного прибора, предназначенного для генерирования рентгеновского излучения.

Рис.1. Шкала электромагнитных волн

На Рис. 2 схематично представлены основные узлы рентгеновской трубки: катод (1) нить накала (2), стеклянная или керамическая колба (3), анод (4) и источник высокого напряжения (5). Получение рентгеновского излучения осуществляется путём бомбардировки анода трубки пучком электронов, ускоренных приложенным к её электродам напряжением. Источником электронов является катод с нитью накала из вольфрамовой проволоки, который нагревается до высокой температуры (примерно 2500°С).

Рис.2. Схема основных узлов рентгеновской трубки

Фокусировка потока электронов в узкий пучок достигается оптимальным выбором электрического поля в межэлектродном пространстве. Направляющиеся от катода к аноду электроны бомбардируют анод, на поверхности тела которого происходит их резкое торможение, образуя, таким образом, тормозное излучение непрерывного спектра. Интенсивность его зависит от величины ускоряющего напряжения и атомного номера материала мишени анода. Чем выше атомный номер материала мишени, тем сильнее тормозятся в нём электроны. Поэтому, как правило, на изготовление анода идут материалы типа вольфрама, имеющие, кроме этого, высокую точку плавления и хорошую теплопроводность. Интенсивность тормозного излучения характеризуется так называемой "лучевой отдачей" рентгеновской трубки, зависящей, главным образом, от величины питающего трубку напряжения и уровня предварительной фильтрации излучения.

Оптические свойства рентгеновской трубки определяются формой и размерами оптического фокуса трубки, а также углом раствора пучка излучения. Кроме тормозного излучения при бомбардировке анода электронами возникает характеристическое рентгеновское излучение, вызванное, как уже говорилось, изменением энергетического состояния атомов. Если один из электронов внутренней оболочки атома выбит электроном или квантом тормозного излучения, то атом переходит в возбужденное состояние. Освободившееся место в оболочке заполняется электронами внешних слоев с меньшей энергией связи. При этом атом переходит в нормальное состояние и испускает квант характеристического излучения с энергией равной разности энергии на соответствующих уровнях. Частота характеристического рентгеновского излучения связана с атомным номером вещества анода. В отличие от непрерывного спектра тормозного рентгеновского излучения длины волн характеристического рентгеновского излучения имеют вполне определённые для данного материала анода значения.

При прохождении через исследуемое вещество пучок рентгеновского излучения ослабляется вследствие взаимодействия его с электронами, атомами и ядрами вещества. Основные процессы взаимодействия рентгеновского излучения с веществом при энергии квантов электромагнитного поля (фотонов) - менее 106 эВ - это фотоэлектрическое поглощение и рассеяние. Физика явлений при этом совершенно адекватна физике образования рентгеновского излучения.

Фотоэлектрическое поглощение рентгеновского излучения происходит при взаимодействии фотонов рентгеновского излучения с атомами вещества. Фотоны, попадая на атомы, выбивают электроны с внутренней оболочки атома. При этом первичный фотон полностью расходует свою энергию на преодоление энергии связи электрона в атоме и сообщает электрону кинетическую энергию. В результате энергетической перестройки атома, происходящей после вылета из атома фотоэлектрона, образуется характеристическое рентгеновское излучение, которое при взаимодействии с другими атомами может вызывать вторичный фотоэффект. Этот процесс будет происходить до тех пор, пока энергия фотонов не станет меньше энергии связи электронов в атоме. Очень важно отметить, что процесс ослабления излучения при прохождении через вещество зависит не только от энергии фотонов и длины волны излучения, но и от атомного номера вещества, в котором происходит фотоэлектрическое поглощение.

Образующееся при прохождении через вещество рассеянное излучение либо обусловлено тем, что под действием электрического поля электроны получают переменное ускорение, в результате которого они сами излучают электромагнитные волны с частотой, совпадающей с частотой первичного излучения и изменённым направлением излучения, (так называемое - когерентное рассеяние), либо обусловлено взаимодействием фотонов со свободными или слабо связанными электронами атома вещества (так называемое - комптоновское рассеяние).

Таким образом, в результате фотоэлектрического поглощения рентгеновского излучения в веществе и рассеяния - часть энергии первичного излучения остаётся в виде характеристического и рассеянного излучения, часть энергии поглощается, а часть - преобразуется в энергию заряженных частиц - электронов.

Прошедшее через предмет или вещество рентгеновское излучение ослабляется в различной степени в зависимости от распределения плотности их материала. Таким образом, оно несёт информацию о внутреннем строении объекта, т.е. образует рентгеновское изображение просвечиваемого объекта, которое затем преобразуется в адекватное оптическое изображение воспринимаемое глазами оператора. Возникающее рассеянное излучение не несёт информации о внутреннем строении предмета и только ухудшает качество формируемого изображения.

Основными требованиями к преобразователям рентгеновского изображения являются: максимальная информативность рентгеновского изображения при минимально возможной поглощённой дозе излучения просвечиваемым объектом и оптимальное преобразование рентгеновского изображения в оптическое, обеспечивающее получение оператором максимума информации, содержащейся в теневом рентгеновском изображении.

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Таможенная система»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы