Математические методы экономики

Очевидно, что аналогичные распределения можно провести и для конкурента В, который должен рас­смотреть все свои стратегии, выделяя для каждой из них максимальные значения проигрыша: (последняя строка матрицы).

Из всех значений находят минимальное:

=129 height=37 src="images/referats/5477/image075.png">,

которое дает минимаксный выигрыш или минимакс.

Такая -стратегия - минимаксная, придерживаясь которой сторона В гарантировано, что в любом случае проиграет не больше . Поэтому называют верхней ценой игры.

Если , то число С называют чистой ценой игры или седловой точкой.

Для игры с седловой точкой нахождение решения состоит в выборе пары максиминной и минимаксной стратегий, которые являются оптимальными, так как любое отклонение от этих стратегий приводит к умень­шению выигрыша первого игрока и увеличению про­игрыша второго игрока по сравнению с ценой игры С.

Однако не все матрицы имеют седловую точку. Тогда решение находят, применяя смешанные стратегии, то есть чередуя случайным образом несколько чистых стра­тегий (гибкая тактика).

Вектор, каждая из компонент которого показывает относительную частоту использования игроком соответ­ствующей чистой стратегии, называют смешанной стра­тегией данного игрока.

Из этого определения следует, что сумма компонент этого вектора равна единице, а сами компоненты не отрицательны.

Обычно смешанную стратегию первого игрока обо­значают как вектор

, а второго игрока - как вектор , где . (5.1.1).

Если u° - оптимальная стратегия первого игрока, z° - оптимальная стратегия второго игрока, то число - называют ценой игры.

Для того чтобы число - было ценой игры, а u° и z° — оптимальными стратегиями, необходимо и до­статочно выполнение неравенств:

, (5.1.2)

. (5.1.3)

Если один из игроков применяет оптимальную сме­шанную стратегию, то его выигрыш равен цене игры и вне зависимости от того, с какими частотами будет применять второй игрок стратегии, вошедшие в опти­мальную, в том числе и чистые стратегии

Внимание к седловым точкам в теории игр традиционно. Объясняется это недоверием к максимину, как к принципу оптимального выбора в том случае, когда нет седловой точки. Поэтому естественно стремление заполнить промежуток между максимином и минимаксом путем применения смешанных стратегий.

Однако, не следует забывать, что: 1) применение смешанных стратегий рисковано, когда игра не повторяется; 2) если игра повторяется, надо иметь уверенность, что у про­тивника нет информации о конкретных решениях другого игрока; 3) противник не обязан применять смешанные стратегии, равно как и стремиться к цели, противоположной цели другого игрока.

Обозначим смешанную стратегию первого игрока p = {pi}, где pi - вероятность применения i-й стратегии, , . Пусть смешан­ная стратегия второго игрока , , qj - вероятность при­менения j-й стратегии, , . Р и Q определяют матема­тическое ожидание платежа:

.

Теорема фон Неймана. Любая матричная игра имеет седловую точ­ку в смешанных стратегиях.

Доказательство. Множества M и N ограничены и замкнуты, так как , , а функция W непрерывна по P и Q . W линейна по P при фиксированных Q, следовательно, вогнута по P при фиксированных Q. Аналогично W выпукла по Q при фиксированных P. M и N выпуклы.

Действительно, рассмотрим такие и , что , , тогда , .

Складывая, получим .

Кроме того, .

Следовательно, при и

тоже смешанная стратегия.

Применяя фундаментальную теорему, получим то, что требуется доказать:

.

Опираясь на доказанную теорему, можно быть уверенным, что ре­шение игры в смешанных стратегиях всегда существует (если только вообще их можно применять). В теории игр доказывается теорема, указывающая на эквивалентность решения матричной игры в смешанных стратегиях и двойственной задачи линейного программирования.

Пусть Po и Qo оптимальные смешанные стратегии, v - цена игры, тогда

.

Из теорема следует, что

(4)

(5)

.

Обозначим .

Поделим (4) на v , получим

.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы