Строительство промышленного здания

Статический расчет поперечной рамы имеет цель определить внутренние усилия в характерных сечениях колонн от нагрузок и воздействий.

Для выявления наибольших возможных усилий в сечениях колонн расчет выполняют отдельно для каждого вида загружения. Рассмотрены следующие виды загружений:

- постоянная; снеговая; вертикальная крановая нагрузка Dmax на колонне по оси A, Dmin -на колонне по ос

и Б; вертикальная крановая нагрузка Dmax на колонне по оси Б, Dmin - на колонне по оси А; горизонтальная крановая нагрузка T, приложенная к колонне по оси А слева направо и справа налево; горизонтальная крановая нагрузка T, приложенная к колонне по оси Б слева направо и справа налево; ветровая нагрузка, действующая слева направо; ветровая нагрузка, действующая справа налево.

Ввиду симметрии поперечной рамы достаточно определить усилия только для одной колонны от всех возможных видов загружения. Для подбора сечений колонн определяют наибольшие возможные усилия (изгибающие моменты и продольные силы) в четырех сечениях колонн: I-I сечение у верха колонны; II-II - сечение непосредственно выше подкрановой консоли, III-III -сечение непосредственно ниже подкрановой консоли, IV-IV - сечение у низа колонны (в заделке). Для последнего сечения определяют поперечную силу, необходимую для расчета фундаментов.

Так как со стропильной конструкцией, колонна соединена шарнирно, все усилия в сечении I-I, за исключением усилий от постоянной и снеговой нагрузок, равны нулю. Поэтому в данном случае верхнее сечение не будет расчетным и усилия в нем не определяют.

При определении усилий принимают следующее правило знаков:

-реакции, направленные слева направо - положительные;

-изгибающие моменты, действующие по ходу часовой стрелки - положительные;

-продольные усилия, действующие сверху вниз положительные.

Геометрические характеристики колонн.

Размеры сечения двухветвевых колонн приведены выше. Остальные характеристики: количество панелей подкрановой части n=4, расчетная высота колонны Н=12,75 м, высота подкрановой части Нн=8,35 м, надкрановой части Нв=4,4 м, расстояние между осями ветвей с=0,95м.

Момент инерции надкрановой части колонн:

Момент инерции подкрановой части:

то же одной ветви:

Отношение высоты подкрановой части к полной высоте колонн

По формулам вычисляют вспомогательные коэффициенты:

а) Определение усилий в колоннах рамы.

Статический расчет поперечной рамы на различные нагрузки и воздействия удобно производить методом перемещений.

Неизвестным для рассматриваемой рамы является горизонтальное перемещение верха колонны. Вводя по направлению неизвестного перемещения стерженек-связь (фиктивную связь), получают основную систему.

Каноническое уравнение метода перемещений имеет вид:

где cdin- коэффициент учитывающий пространственную работу каркаса здания при крановых нагрузках; - сумма реакций несмещаемого верха колонн от внешнего воздействия;

-сумма реакций в фиктивной связи основной системы от единичного перемещения; - искомое горизонтальное перемещение верха колонны.

Основную систему подвергают единичному воздействию неизвестного и вычисляют реакции верхнего конца двухветвевых колонн по формулам:

Суммарная реакция в фиктивной связи основной системы:

Затем основную систему постепенно загружают постоянными и временными нагрузками, которые вызывают в колоннах соответствующие реакции и изгибающие моменты. Значения реакций несмещаемого верха колонн от внешнего воздействия также определяются по формулам, приведенным в прил. 12.

Действительную (упругую) реакцию верха каждой колонны рамы от: любой нагрузки находят по формуле:

Далее прикладывают к i-той колонне соответствующую нагрузку и реакцию Rei , вызванную этой нагрузкой, и находят внутренние усилия М, N и Q в сечениях колонн как в консоли, защемленной в фундаменте.

Усилия в колоннах поперечной рамы от постоянной нагрузки (рис.4,б).

В верхней части колонны продольная сила Nп=653 кН приложена с эксцентриситетом e1=0,15м. Изгибающий момент M1=Nпe1=

в подкрановой части колонны, кроме силы Nп, приложенной с эксцентриситетом е2=0,3 м действуют: расчетная нагрузка от веса подкрановой

балки и подкранового пути Nп.б.=120 кН с е4=0,4 м; расчетная нагрузка от надкрановой части колонны Nкв=34,5 кН с эксцентриситетом е2=0,3 м; расчетная нагрузка от стеновых панелей Nст=191 кН с эксцентриситетом е3=0,75м.

Вычисляют реакцию верхнего конца колонны по оси А (левой) по формуле

Рис. 4. К определению реакций в колоннах от нагрузок.

Согласно принятому в расчете правилу знаков реакция, направленная вправо, положительна. Реакция правой колонны R2=5,2кН. Суммарная реакция связей в основной системе

Rip=ΣRi=-5,2+5,2=0 (при этом из канонического уравнения следует, что Δ1=0).

Упругая реакция колонны по оси A:

Изгибающие моменты в сечениях колонны (нумерация сечений показана на рис.4,а) равны:

MI=M1=97,95 кНм; MII=Re1*Hв+M1=-5,2*4,4+97,95=75,15 кНм

МIII=М1+М2=97,95-301,5=-203,55 кНм;

MIV=M1+M2+Re1*H=97,95-301,5+(-5,2*12,75)=-269,85 кНм

Продольные силы в левой колонне:

N1=NII=: Nп+Nкв=653+34,5=687,5 кН;

NIII=NII+Nст+Nп.б.= 687,5+191+120=998,5кН;

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Строительство и архитектура»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы