Охрана природы

Биохимические методы очистки основаны на способности микроорганизмов разрушать и преобразовывать различные соединения. Разложение веществ происходит под действием ферментов, вырабатываемых микроорганизмами в среде очищаемых газов. При частом изменении состава газа микроорганизмы не успевают адаптироваться для выработки новых ферментов, и степень разрушения вредных примесей становится неполной.

Поэтому биохимические системы более всего пригодны для очистки газов постоянного состава.

Биохимическую газоочистку проводят либо в биофильтрах, либо в биоскрубберах. В биофильтрах очищаемый газ пропускают через слой насадки, орошаемый водой, которая создает влажность, достаточную для поддержания жизнедеятельности микроорганизмов. Поверхность насадки покрыта биологически активной биопленкой (БП) из микроорганизмов.

Микроорганизмы БП в процессе своей жизнедеятельности поглощают и разрушают содержащиеся в газовой среде вещества, в результате чего происходит рост их массы. Эффективность очистки в значительной мере определяется массопереносом из газовой фазы в БП и равномерным распределением газа в слое насадки. Такого рода фильтры используют, например, для дезодорации воздуха. В этом случае очищаемый газовый поток фильтруется в условиях прямотока с орошаемой жидкостью, содержащей питательные вещества. После фильтра жидкость поступает в отстойники и далее вновь подается на орошение.

В настоящее время биофильтры используют для очистки отходящих газов от аммиака, фенола, крезола, формальдегида, органических растворителей покрасочных и сушильных линий, сероводорода, метилмеркаптана и других сероорганических соединений.

Плазмохимические методы.

Плазмохимический метод основан на пропускании через высоковольтный разряд воздушной смеси с вредными примесями. Используют, как правило, озонаторы на основе барьерных,коронных или скользящих разрядов, либо импульсные высокочастотные разряды на электрофильтрах. Проходящий низкотемпературную плазму воздух с примесями подвергается бомбардировке электронами и ионами. В результате в газовой среде образуется атомарный кислород, озон, гидроксильные группы, возбуждённые молекулы и атомы, которые и участвуют в плазмохимических реакциях с вредными примесями. Основные направления по применению данного метода идут по удалению SO2, NOx и органических соединений. Использование аммиака, при нейтрализации SO2 и NOx, дает на выходе после реактора порошкообразные удобрения (NH4)2SO4 и NH4NH3, которые фильтруются.

Плазмокаталитический метод.

Это довольно новый способ очистки, который использует два известных метода – плазмохимический и каталитический. Установки, работающие на основе этого метода, состоят из двух ступеней. Первая – это плазмохимический реактор (озонатор), вторая - каталитический реактор. Газообразные загрязнители, проходя зону высоковольтного разряда в газоразрядных ячейках и взаимодействуя с продуктами электросинтеза, разрушаются и переходят в безвредные соединения, вплоть до CO2 и H2O. Глубина конверсии (очистки) зависит от величины удельной энергии, выделяющейся в зоне реакции. После плазмохимического реактора воздух подвергается финишной тонкой очистке в каталитическом реакторе. Синтезируемый в газовом разряде плазмохимического реактора озон попадает на катализатор, где сразу распадается на активный атомарный и молекулярный кислород. Остатки загрязняющих веществ (активные радикалы, возбужденные атомы и молекулы), не уничтоженные в плазмохимическом реакторе, разрушаются на катализаторе благодаря глубокому окислению кислородом.

Преимуществом этого метода являются использование каталитических реакций при температурах, более низких (40-100 &degC), чем при термокаталитическом методе, что приводит к увеличению срока службы катализаторов, а также к меньшим энергозатратам (при концентрациях вредных веществ до 0,5 г/м³.).

Недостатками данного метода являются:

большая зависимость от концентрации пыли, необходимость предварительной очистки до концентрации 3-5 мг/м³,

при больших концентрациях вредных веществ(свыше 1 г/м³) стоимость оборудования и эксплуатационные расходы превышают соответствующие затраты в сравнении с термокаталитическим методом.

Фотокаталитический метод.

Сейчас широко изучается и развивается фотокаталитический метод окисления органических соединений. В основном при этом используются катализаторы на основе TiO2, которые облучаются ультрафиолетом. Известны бытовые очистители воздуха японской фирмы «Daikin», использующие этот метод. Недостатком метода является засорение катализатора продуктами реакции. Для решения этой задачи используют введение в очищаемую смесь озона, однако данная технология применима для ограниченного состава органических соединений и при небольших концентрациях.

Литература

1.С. Калверта и Г. Инглунда. Защита атмосферы от промышленных загрязнений. Справочник “Металлургия”,Москва, 1991

2.А.Г. Нецветаев. Экологическое право. МГУ.2006

3.Дьяконов К.Н., Дончева А.В.Экологическое проектирование и экспертиза."Аспект-Пресс", 2005 г.

4.Горелов А. А. Экология. "Академия", 2006 г.

5.В.И.Коробкин, Л.В.Передельский.Экология в вопросах и ответах. Учебное пособие. Феникс, 2005 г.

6.Ю.Л.Хотунцев. Экология и экологическая безопасность. Учебное пособие для студентов высших педагогических учебных заведений. Академия, 2004 г.

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Экология и охрана природы»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2019 - www.refsru.com - рефераты, курсовые и дипломные работы